Spaces:
Starting
on
T4
Starting
on
T4
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Doc utilities: Utilities related to documentation | |
""" | |
import functools | |
import re | |
import types | |
def add_start_docstrings(*docstr): | |
def docstring_decorator(fn): | |
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") | |
return fn | |
return docstring_decorator | |
def add_start_docstrings_to_model_forward(*docstr): | |
def docstring_decorator(fn): | |
docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") | |
class_name = f"[`{fn.__qualname__.split('.')[0]}`]" | |
intro = f" The {class_name} forward method, overrides the `__call__` special method." | |
note = r""" | |
<Tip> | |
Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`] | |
instance afterwards instead of this since the former takes care of running the pre and post processing steps while | |
the latter silently ignores them. | |
</Tip> | |
""" | |
fn.__doc__ = intro + note + docstring | |
return fn | |
return docstring_decorator | |
def add_end_docstrings(*docstr): | |
def docstring_decorator(fn): | |
fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr) | |
return fn | |
return docstring_decorator | |
PT_RETURN_INTRODUCTION = r""" | |
Returns: | |
[`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of | |
`torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various | |
elements depending on the configuration ([`{config_class}`]) and inputs. | |
""" | |
TF_RETURN_INTRODUCTION = r""" | |
Returns: | |
[`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if | |
`return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the | |
configuration ([`{config_class}`]) and inputs. | |
""" | |
def _get_indent(t): | |
"""Returns the indentation in the first line of t""" | |
search = re.search(r"^(\s*)\S", t) | |
return "" if search is None else search.groups()[0] | |
def _convert_output_args_doc(output_args_doc): | |
"""Convert output_args_doc to display properly.""" | |
# Split output_arg_doc in blocks argument/description | |
indent = _get_indent(output_args_doc) | |
blocks = [] | |
current_block = "" | |
for line in output_args_doc.split("\n"): | |
# If the indent is the same as the beginning, the line is the name of new arg. | |
if _get_indent(line) == indent: | |
if len(current_block) > 0: | |
blocks.append(current_block[:-1]) | |
current_block = f"{line}\n" | |
else: | |
# Otherwise it's part of the description of the current arg. | |
# We need to remove 2 spaces to the indentation. | |
current_block += f"{line[2:]}\n" | |
blocks.append(current_block[:-1]) | |
# Format each block for proper rendering | |
for i in range(len(blocks)): | |
blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i]) | |
blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i]) | |
return "\n".join(blocks) | |
def _prepare_output_docstrings(output_type, config_class, min_indent=None): | |
""" | |
Prepares the return part of the docstring using `output_type`. | |
""" | |
output_docstring = output_type.__doc__ | |
# Remove the head of the docstring to keep the list of args only | |
lines = output_docstring.split("\n") | |
i = 0 | |
while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None: | |
i += 1 | |
if i < len(lines): | |
params_docstring = "\n".join(lines[(i + 1) :]) | |
params_docstring = _convert_output_args_doc(params_docstring) | |
else: | |
raise ValueError( | |
f"No `Args` or `Parameters` section is found in the docstring of `{output_type.__name__}`. Make sure it has" | |
"docstring and contain either `Args` or `Parameters`." | |
) | |
# Add the return introduction | |
full_output_type = f"{output_type.__module__}.{output_type.__name__}" | |
intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION | |
intro = intro.format(full_output_type=full_output_type, config_class=config_class) | |
result = intro + params_docstring | |
# Apply minimum indent if necessary | |
if min_indent is not None: | |
lines = result.split("\n") | |
# Find the indent of the first nonempty line | |
i = 0 | |
while len(lines[i]) == 0: | |
i += 1 | |
indent = len(_get_indent(lines[i])) | |
# If too small, add indentation to all nonempty lines | |
if indent < min_indent: | |
to_add = " " * (min_indent - indent) | |
lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines] | |
result = "\n".join(lines) | |
return result | |
FAKE_MODEL_DISCLAIMER = """ | |
<Tip warning={true}> | |
This example uses a random model as the real ones are all very big. To get proper results, you should use | |
{real_checkpoint} instead of {fake_checkpoint}. If you get out-of-memory when loading that checkpoint, you can try | |
adding `device_map="auto"` in the `from_pretrained` call. | |
</Tip> | |
""" | |
PT_TOKEN_CLASSIFICATION_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer( | |
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" | |
... ) | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_token_class_ids = logits.argmax(-1) | |
>>> # Note that tokens are classified rather then input words which means that | |
>>> # there might be more predicted token classes than words. | |
>>> # Multiple token classes might account for the same word | |
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] | |
>>> predicted_tokens_classes | |
{expected_output} | |
>>> labels = predicted_token_class_ids | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> round(loss.item(), 2) | |
{expected_loss} | |
``` | |
""" | |
PT_QUESTION_ANSWERING_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
>>> inputs = tokenizer(question, text, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> answer_start_index = outputs.start_logits.argmax() | |
>>> answer_end_index = outputs.end_logits.argmax() | |
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] | |
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True) | |
{expected_output} | |
>>> # target is "nice puppet" | |
>>> target_start_index = torch.tensor([{qa_target_start_index}]) | |
>>> target_end_index = torch.tensor([{qa_target_end_index}]) | |
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) | |
>>> loss = outputs.loss | |
>>> round(loss.item(), 2) | |
{expected_loss} | |
``` | |
""" | |
PT_SEQUENCE_CLASSIFICATION_SAMPLE = r""" | |
Example of single-label classification: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_class_id = logits.argmax().item() | |
>>> model.config.id2label[predicted_class_id] | |
{expected_output} | |
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` | |
>>> num_labels = len(model.config.id2label) | |
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) | |
>>> labels = torch.tensor([1]) | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> round(loss.item(), 2) | |
{expected_loss} | |
``` | |
Example of multi-label classification: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5] | |
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` | |
>>> num_labels = len(model.config.id2label) | |
>>> model = {model_class}.from_pretrained( | |
... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification" | |
... ) | |
>>> labels = torch.sum( | |
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1 | |
... ).to(torch.float) | |
>>> loss = model(**inputs, labels=labels).loss | |
``` | |
""" | |
PT_MASKED_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> # retrieve index of {mask} | |
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] | |
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) | |
>>> tokenizer.decode(predicted_token_id) | |
{expected_output} | |
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] | |
>>> # mask labels of non-{mask} tokens | |
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) | |
>>> outputs = model(**inputs, labels=labels) | |
>>> round(outputs.loss.item(), 2) | |
{expected_loss} | |
``` | |
""" | |
PT_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
``` | |
""" | |
PT_MULTIPLE_CHOICE_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> choice0 = "It is eaten with a fork and a knife." | |
>>> choice1 = "It is eaten while held in the hand." | |
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 | |
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True) | |
>>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1 | |
>>> # the linear classifier still needs to be trained | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
``` | |
""" | |
PT_CAUSAL_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs, labels=inputs["input_ids"]) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
``` | |
""" | |
PT_SPEECH_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, {model_class} | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
{expected_output} | |
``` | |
""" | |
PT_SPEECH_CTC_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, {model_class} | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_ids = torch.argmax(logits, dim=-1) | |
>>> # transcribe speech | |
>>> transcription = processor.batch_decode(predicted_ids) | |
>>> transcription[0] | |
{expected_output} | |
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids | |
>>> # compute loss | |
>>> loss = model(**inputs).loss | |
>>> round(loss.item(), 2) | |
{expected_loss} | |
``` | |
""" | |
PT_SPEECH_SEQ_CLASS_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoFeatureExtractor, {model_class} | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> predicted_class_ids = torch.argmax(logits, dim=-1).item() | |
>>> predicted_label = model.config.id2label[predicted_class_ids] | |
>>> predicted_label | |
{expected_output} | |
>>> # compute loss - target_label is e.g. "down" | |
>>> target_label = model.config.id2label[0] | |
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]]) | |
>>> loss = model(**inputs).loss | |
>>> round(loss.item(), 2) | |
{expected_loss} | |
``` | |
""" | |
PT_SPEECH_FRAME_CLASS_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoFeatureExtractor, {model_class} | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate) | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> probabilities = torch.sigmoid(logits[0]) | |
>>> # labels is a one-hot array of shape (num_frames, num_speakers) | |
>>> labels = (probabilities > 0.5).long() | |
>>> labels[0].tolist() | |
{expected_output} | |
``` | |
""" | |
PT_SPEECH_XVECTOR_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoFeatureExtractor, {model_class} | |
>>> from datasets import load_dataset | |
>>> import torch | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = feature_extractor( | |
... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True | |
... ) | |
>>> with torch.no_grad(): | |
... embeddings = model(**inputs).embeddings | |
>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() | |
>>> # the resulting embeddings can be used for cosine similarity-based retrieval | |
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1) | |
>>> similarity = cosine_sim(embeddings[0], embeddings[1]) | |
>>> threshold = 0.7 # the optimal threshold is dataset-dependent | |
>>> if similarity < threshold: | |
... print("Speakers are not the same!") | |
>>> round(similarity.item(), 2) | |
{expected_output} | |
``` | |
""" | |
PT_VISION_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoImageProcessor, {model_class} | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("huggingface/cats-image") | |
>>> image = dataset["test"]["image"][0] | |
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = image_processor(image, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
{expected_output} | |
``` | |
""" | |
PT_VISION_SEQ_CLASS_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoImageProcessor, {model_class} | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("huggingface/cats-image") | |
>>> image = dataset["test"]["image"][0] | |
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = image_processor(image, return_tensors="pt") | |
>>> with torch.no_grad(): | |
... logits = model(**inputs).logits | |
>>> # model predicts one of the 1000 ImageNet classes | |
>>> predicted_label = logits.argmax(-1).item() | |
>>> print(model.config.id2label[predicted_label]) | |
{expected_output} | |
``` | |
""" | |
PT_SAMPLE_DOCSTRINGS = { | |
"SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE, | |
"QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE, | |
"TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE, | |
"MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE, | |
"MaskedLM": PT_MASKED_LM_SAMPLE, | |
"LMHead": PT_CAUSAL_LM_SAMPLE, | |
"BaseModel": PT_BASE_MODEL_SAMPLE, | |
"SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE, | |
"CTC": PT_SPEECH_CTC_SAMPLE, | |
"AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE, | |
"AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE, | |
"AudioXVector": PT_SPEECH_XVECTOR_SAMPLE, | |
"VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE, | |
"ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE, | |
} | |
TF_TOKEN_CLASSIFICATION_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer( | |
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf" | |
... ) | |
>>> logits = model(**inputs).logits | |
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1) | |
>>> # Note that tokens are classified rather then input words which means that | |
>>> # there might be more predicted token classes than words. | |
>>> # Multiple token classes might account for the same word | |
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()] | |
>>> predicted_tokens_classes | |
{expected_output} | |
``` | |
```python | |
>>> labels = predicted_token_class_ids | |
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss) | |
>>> round(float(loss), 2) | |
{expected_loss} | |
``` | |
""" | |
TF_QUESTION_ANSWERING_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
>>> inputs = tokenizer(question, text, return_tensors="tf") | |
>>> outputs = model(**inputs) | |
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0]) | |
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0]) | |
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1] | |
>>> tokenizer.decode(predict_answer_tokens) | |
{expected_output} | |
``` | |
```python | |
>>> # target is "nice puppet" | |
>>> target_start_index = tf.constant([{qa_target_start_index}]) | |
>>> target_end_index = tf.constant([{qa_target_end_index}]) | |
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index) | |
>>> loss = tf.math.reduce_mean(outputs.loss) | |
>>> round(float(loss), 2) | |
{expected_loss} | |
``` | |
""" | |
TF_SEQUENCE_CLASSIFICATION_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") | |
>>> logits = model(**inputs).logits | |
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) | |
>>> model.config.id2label[predicted_class_id] | |
{expected_output} | |
``` | |
```python | |
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` | |
>>> num_labels = len(model.config.id2label) | |
>>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels) | |
>>> labels = tf.constant(1) | |
>>> loss = model(**inputs, labels=labels).loss | |
>>> round(float(loss), 2) | |
{expected_loss} | |
``` | |
""" | |
TF_MASKED_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf") | |
>>> logits = model(**inputs).logits | |
>>> # retrieve index of {mask} | |
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0]) | |
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index) | |
>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1) | |
>>> tokenizer.decode(predicted_token_id) | |
{expected_output} | |
``` | |
```python | |
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"] | |
>>> # mask labels of non-{mask} tokens | |
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100) | |
>>> outputs = model(**inputs, labels=labels) | |
>>> round(float(outputs.loss), 2) | |
{expected_loss} | |
``` | |
""" | |
TF_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") | |
>>> outputs = model(inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
``` | |
""" | |
TF_MULTIPLE_CHOICE_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> choice0 = "It is eaten with a fork and a knife." | |
>>> choice1 = "It is eaten while held in the hand." | |
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True) | |
>>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}} | |
>>> outputs = model(inputs) # batch size is 1 | |
>>> # the linear classifier still needs to be trained | |
>>> logits = outputs.logits | |
``` | |
""" | |
TF_CAUSAL_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> import tensorflow as tf | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") | |
>>> outputs = model(inputs) | |
>>> logits = outputs.logits | |
``` | |
""" | |
TF_SPEECH_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, {model_class} | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
{expected_output} | |
``` | |
""" | |
TF_SPEECH_CTC_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoProcessor, {model_class} | |
>>> from datasets import load_dataset | |
>>> import tensorflow as tf | |
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") | |
>>> dataset = dataset.sort("id") | |
>>> sampling_rate = dataset.features["audio"].sampling_rate | |
>>> processor = AutoProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> # audio file is decoded on the fly | |
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf") | |
>>> logits = model(**inputs).logits | |
>>> predicted_ids = tf.math.argmax(logits, axis=-1) | |
>>> # transcribe speech | |
>>> transcription = processor.batch_decode(predicted_ids) | |
>>> transcription[0] | |
{expected_output} | |
``` | |
```python | |
>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids | |
>>> # compute loss | |
>>> loss = model(**inputs).loss | |
>>> round(float(loss), 2) | |
{expected_loss} | |
``` | |
""" | |
TF_VISION_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoImageProcessor, {model_class} | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("huggingface/cats-image") | |
>>> image = dataset["test"]["image"][0] | |
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = image_processor(image, return_tensors="tf") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
>>> list(last_hidden_states.shape) | |
{expected_output} | |
``` | |
""" | |
TF_VISION_SEQ_CLASS_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoImageProcessor, {model_class} | |
>>> import tensorflow as tf | |
>>> from datasets import load_dataset | |
>>> dataset = load_dataset("huggingface/cats-image") | |
>>> image = dataset["test"]["image"][0] | |
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = image_processor(image, return_tensors="tf") | |
>>> logits = model(**inputs).logits | |
>>> # model predicts one of the 1000 ImageNet classes | |
>>> predicted_label = int(tf.math.argmax(logits, axis=-1)) | |
>>> print(model.config.id2label[predicted_label]) | |
{expected_output} | |
``` | |
""" | |
TF_SAMPLE_DOCSTRINGS = { | |
"SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE, | |
"QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE, | |
"TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE, | |
"MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE, | |
"MaskedLM": TF_MASKED_LM_SAMPLE, | |
"LMHead": TF_CAUSAL_LM_SAMPLE, | |
"BaseModel": TF_BASE_MODEL_SAMPLE, | |
"SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE, | |
"CTC": TF_SPEECH_CTC_SAMPLE, | |
"VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE, | |
"ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE, | |
} | |
FLAX_TOKEN_CLASSIFICATION_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
``` | |
""" | |
FLAX_QUESTION_ANSWERING_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" | |
>>> inputs = tokenizer(question, text, return_tensors="jax") | |
>>> outputs = model(**inputs) | |
>>> start_scores = outputs.start_logits | |
>>> end_scores = outputs.end_logits | |
``` | |
""" | |
FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
``` | |
""" | |
FLAX_MASKED_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
``` | |
""" | |
FLAX_BASE_MODEL_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
``` | |
""" | |
FLAX_MULTIPLE_CHOICE_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> choice0 = "It is eaten with a fork and a knife." | |
>>> choice1 = "It is eaten while held in the hand." | |
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True) | |
>>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}}) | |
>>> logits = outputs.logits | |
``` | |
""" | |
FLAX_CAUSAL_LM_SAMPLE = r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, {model_class} | |
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}") | |
>>> model = {model_class}.from_pretrained("{checkpoint}") | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") | |
>>> outputs = model(**inputs) | |
>>> # retrieve logts for next token | |
>>> next_token_logits = outputs.logits[:, -1] | |
``` | |
""" | |
FLAX_SAMPLE_DOCSTRINGS = { | |
"SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE, | |
"QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE, | |
"TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE, | |
"MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE, | |
"MaskedLM": FLAX_MASKED_LM_SAMPLE, | |
"BaseModel": FLAX_BASE_MODEL_SAMPLE, | |
"LMHead": FLAX_CAUSAL_LM_SAMPLE, | |
} | |
def filter_outputs_from_example(docstring, **kwargs): | |
""" | |
Removes the lines testing an output with the doctest syntax in a code sample when it's set to `None`. | |
""" | |
for key, value in kwargs.items(): | |
if value is not None: | |
continue | |
doc_key = "{" + key + "}" | |
docstring = re.sub(rf"\n([^\n]+)\n\s+{doc_key}\n", "\n", docstring) | |
return docstring | |
def add_code_sample_docstrings( | |
*docstr, | |
processor_class=None, | |
checkpoint=None, | |
output_type=None, | |
config_class=None, | |
mask="[MASK]", | |
qa_target_start_index=14, | |
qa_target_end_index=15, | |
model_cls=None, | |
modality=None, | |
expected_output=None, | |
expected_loss=None, | |
real_checkpoint=None, | |
): | |
def docstring_decorator(fn): | |
# model_class defaults to function's class if not specified otherwise | |
model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls | |
if model_class[:2] == "TF": | |
sample_docstrings = TF_SAMPLE_DOCSTRINGS | |
elif model_class[:4] == "Flax": | |
sample_docstrings = FLAX_SAMPLE_DOCSTRINGS | |
else: | |
sample_docstrings = PT_SAMPLE_DOCSTRINGS | |
# putting all kwargs for docstrings in a dict to be used | |
# with the `.format(**doc_kwargs)`. Note that string might | |
# be formatted with non-existing keys, which is fine. | |
doc_kwargs = { | |
"model_class": model_class, | |
"processor_class": processor_class, | |
"checkpoint": checkpoint, | |
"mask": mask, | |
"qa_target_start_index": qa_target_start_index, | |
"qa_target_end_index": qa_target_end_index, | |
"expected_output": expected_output, | |
"expected_loss": expected_loss, | |
"real_checkpoint": real_checkpoint, | |
"fake_checkpoint": checkpoint, | |
"true": "{true}", # For <Tip warning={true}> syntax that conflicts with formatting. | |
} | |
if ("SequenceClassification" in model_class or "AudioClassification" in model_class) and modality == "audio": | |
code_sample = sample_docstrings["AudioClassification"] | |
elif "SequenceClassification" in model_class: | |
code_sample = sample_docstrings["SequenceClassification"] | |
elif "QuestionAnswering" in model_class: | |
code_sample = sample_docstrings["QuestionAnswering"] | |
elif "TokenClassification" in model_class: | |
code_sample = sample_docstrings["TokenClassification"] | |
elif "MultipleChoice" in model_class: | |
code_sample = sample_docstrings["MultipleChoice"] | |
elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]: | |
code_sample = sample_docstrings["MaskedLM"] | |
elif "LMHead" in model_class or "CausalLM" in model_class: | |
code_sample = sample_docstrings["LMHead"] | |
elif "CTC" in model_class: | |
code_sample = sample_docstrings["CTC"] | |
elif "AudioFrameClassification" in model_class: | |
code_sample = sample_docstrings["AudioFrameClassification"] | |
elif "XVector" in model_class and modality == "audio": | |
code_sample = sample_docstrings["AudioXVector"] | |
elif "Model" in model_class and modality == "audio": | |
code_sample = sample_docstrings["SpeechBaseModel"] | |
elif "Model" in model_class and modality == "vision": | |
code_sample = sample_docstrings["VisionBaseModel"] | |
elif "Model" in model_class or "Encoder" in model_class: | |
code_sample = sample_docstrings["BaseModel"] | |
elif "ImageClassification" in model_class: | |
code_sample = sample_docstrings["ImageClassification"] | |
else: | |
raise ValueError(f"Docstring can't be built for model {model_class}") | |
code_sample = filter_outputs_from_example( | |
code_sample, expected_output=expected_output, expected_loss=expected_loss | |
) | |
if real_checkpoint is not None: | |
code_sample = FAKE_MODEL_DISCLAIMER + code_sample | |
func_doc = (fn.__doc__ or "") + "".join(docstr) | |
output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class) | |
built_doc = code_sample.format(**doc_kwargs) | |
fn.__doc__ = func_doc + output_doc + built_doc | |
return fn | |
return docstring_decorator | |
def replace_return_docstrings(output_type=None, config_class=None): | |
def docstring_decorator(fn): | |
func_doc = fn.__doc__ | |
lines = func_doc.split("\n") | |
i = 0 | |
while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None: | |
i += 1 | |
if i < len(lines): | |
indent = len(_get_indent(lines[i])) | |
lines[i] = _prepare_output_docstrings(output_type, config_class, min_indent=indent) | |
func_doc = "\n".join(lines) | |
else: | |
raise ValueError( | |
f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, " | |
f"current docstring is:\n{func_doc}" | |
) | |
fn.__doc__ = func_doc | |
return fn | |
return docstring_decorator | |
def copy_func(f): | |
"""Returns a copy of a function f.""" | |
# Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard) | |
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__) | |
g = functools.update_wrapper(g, f) | |
g.__kwdefaults__ = f.__kwdefaults__ | |
return g | |