Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Feature extraction saving/loading class for common feature extractors. | |
""" | |
import copy | |
import json | |
import os | |
import warnings | |
from collections import UserDict | |
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
from .dynamic_module_utils import custom_object_save | |
from .utils import ( | |
FEATURE_EXTRACTOR_NAME, | |
PushToHubMixin, | |
TensorType, | |
add_model_info_to_auto_map, | |
cached_file, | |
copy_func, | |
download_url, | |
is_flax_available, | |
is_jax_tensor, | |
is_numpy_array, | |
is_offline_mode, | |
is_remote_url, | |
is_tf_available, | |
is_torch_available, | |
is_torch_device, | |
is_torch_dtype, | |
logging, | |
requires_backends, | |
) | |
if TYPE_CHECKING: | |
if is_torch_available(): | |
import torch # noqa | |
logger = logging.get_logger(__name__) | |
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821 | |
class BatchFeature(UserDict): | |
r""" | |
Holds the output of the [`~SequenceFeatureExtractor.pad`] and feature extractor specific `__call__` methods. | |
This class is derived from a python dictionary and can be used as a dictionary. | |
Args: | |
data (`dict`, *optional*): | |
Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', | |
etc.). | |
tensor_type (`Union[None, str, TensorType]`, *optional*): | |
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at | |
initialization. | |
""" | |
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): | |
super().__init__(data) | |
self.convert_to_tensors(tensor_type=tensor_type) | |
def __getitem__(self, item: str) -> Union[Any]: | |
""" | |
If the key is a string, returns the value of the dict associated to `key` ('input_values', 'attention_mask', | |
etc.). | |
""" | |
if isinstance(item, str): | |
return self.data[item] | |
else: | |
raise KeyError("Indexing with integers is not available when using Python based feature extractors") | |
def __getattr__(self, item: str): | |
try: | |
return self.data[item] | |
except KeyError: | |
raise AttributeError | |
def __getstate__(self): | |
return {"data": self.data} | |
def __setstate__(self, state): | |
if "data" in state: | |
self.data = state["data"] | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.keys | |
def keys(self): | |
return self.data.keys() | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.values | |
def values(self): | |
return self.data.values() | |
# Copied from transformers.tokenization_utils_base.BatchEncoding.items | |
def items(self): | |
return self.data.items() | |
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): | |
""" | |
Convert the inner content to tensors. | |
Args: | |
tensor_type (`str` or [`~utils.TensorType`], *optional*): | |
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If | |
`None`, no modification is done. | |
""" | |
if tensor_type is None: | |
return self | |
# Convert to TensorType | |
if not isinstance(tensor_type, TensorType): | |
tensor_type = TensorType(tensor_type) | |
# Get a function reference for the correct framework | |
if tensor_type == TensorType.TENSORFLOW: | |
if not is_tf_available(): | |
raise ImportError( | |
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." | |
) | |
import tensorflow as tf | |
as_tensor = tf.constant | |
is_tensor = tf.is_tensor | |
elif tensor_type == TensorType.PYTORCH: | |
if not is_torch_available(): | |
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") | |
import torch # noqa | |
def as_tensor(value): | |
if isinstance(value, (list, tuple)) and len(value) > 0 and isinstance(value[0], np.ndarray): | |
value = np.array(value) | |
return torch.tensor(value) | |
is_tensor = torch.is_tensor | |
elif tensor_type == TensorType.JAX: | |
if not is_flax_available(): | |
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") | |
import jax.numpy as jnp # noqa: F811 | |
as_tensor = jnp.array | |
is_tensor = is_jax_tensor | |
else: | |
def as_tensor(value, dtype=None): | |
if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): | |
value_lens = [len(val) for val in value] | |
if len(set(value_lens)) > 1 and dtype is None: | |
# we have a ragged list so handle explicitly | |
value = as_tensor([np.asarray(val) for val in value], dtype=object) | |
return np.asarray(value, dtype=dtype) | |
is_tensor = is_numpy_array | |
# Do the tensor conversion in batch | |
for key, value in self.items(): | |
try: | |
if not is_tensor(value): | |
tensor = as_tensor(value) | |
self[key] = tensor | |
except: # noqa E722 | |
if key == "overflowing_values": | |
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") | |
raise ValueError( | |
"Unable to create tensor, you should probably activate padding " | |
"with 'padding=True' to have batched tensors with the same length." | |
) | |
return self | |
def to(self, *args, **kwargs) -> "BatchFeature": | |
""" | |
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in | |
different `dtypes` and sending the `BatchFeature` to a different `device`. | |
Args: | |
args (`Tuple`): | |
Will be passed to the `to(...)` function of the tensors. | |
kwargs (`Dict`, *optional*): | |
Will be passed to the `to(...)` function of the tensors. | |
Returns: | |
[`BatchFeature`]: The same instance after modification. | |
""" | |
requires_backends(self, ["torch"]) | |
import torch # noqa | |
new_data = {} | |
device = kwargs.get("device") | |
# Check if the args are a device or a dtype | |
if device is None and len(args) > 0: | |
# device should be always the first argument | |
arg = args[0] | |
if is_torch_dtype(arg): | |
# The first argument is a dtype | |
pass | |
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int): | |
device = arg | |
else: | |
# it's something else | |
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.") | |
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor` | |
for k, v in self.items(): | |
# check if v is a floating point | |
if torch.is_floating_point(v): | |
# cast and send to device | |
new_data[k] = v.to(*args, **kwargs) | |
elif device is not None: | |
new_data[k] = v.to(device=device) | |
else: | |
new_data[k] = v | |
self.data = new_data | |
return self | |
class FeatureExtractionMixin(PushToHubMixin): | |
""" | |
This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature | |
extractors. | |
""" | |
_auto_class = None | |
def __init__(self, **kwargs): | |
"""Set elements of `kwargs` as attributes.""" | |
# Pop "processor_class" as it should be saved as private attribute | |
self._processor_class = kwargs.pop("processor_class", None) | |
# Additional attributes without default values | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
def _set_processor_class(self, processor_class: str): | |
"""Sets processor class as an attribute.""" | |
self._processor_class = processor_class | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
**kwargs, | |
): | |
r""" | |
Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a | |
derived class of [`SequenceFeatureExtractor`]. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or | |
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
- a path to a *directory* containing a feature extractor file saved using the | |
[`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., | |
`./my_model_directory/`. | |
- a path or url to a saved feature extractor JSON *file*, e.g., | |
`./my_model_directory/preprocessor_config.json`. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the feature extractor files and override the cached versions | |
if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use | |
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
<Tip> | |
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". | |
</Tip> | |
return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
If `False`, then this function returns just the final feature extractor object. If `True`, then this | |
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary | |
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of | |
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. | |
kwargs (`Dict[str, Any]`, *optional*): | |
The values in kwargs of any keys which are feature extractor attributes will be used to override the | |
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is | |
controlled by the `return_unused_kwargs` keyword parameter. | |
Returns: | |
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]. | |
Examples: | |
```python | |
# We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a | |
# derived class: *Wav2Vec2FeatureExtractor* | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
"facebook/wav2vec2-base-960h" | |
) # Download feature_extraction_config from huggingface.co and cache. | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
"./test/saved_model/" | |
) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')* | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json") | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False | |
) | |
assert feature_extractor.return_attention_mask is False | |
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained( | |
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True | |
) | |
assert feature_extractor.return_attention_mask is False | |
assert unused_kwargs == {"foo": False} | |
```""" | |
kwargs["cache_dir"] = cache_dir | |
kwargs["force_download"] = force_download | |
kwargs["local_files_only"] = local_files_only | |
kwargs["revision"] = revision | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if token is not None: | |
kwargs["token"] = token | |
feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) | |
return cls.from_dict(feature_extractor_dict, **kwargs) | |
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a feature_extractor object to the directory `save_directory`, so that it can be re-loaded using the | |
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] class method. | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the feature extractor JSON file will be saved (will be created if it does not exist). | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if kwargs.get("token", None) is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
kwargs["token"] = use_auth_token | |
if os.path.isfile(save_directory): | |
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
repo_id = self._create_repo(repo_id, **kwargs) | |
files_timestamps = self._get_files_timestamps(save_directory) | |
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be | |
# loaded from the Hub. | |
if self._auto_class is not None: | |
custom_object_save(self, save_directory, config=self) | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) | |
self.to_json_file(output_feature_extractor_file) | |
logger.info(f"Feature extractor saved in {output_feature_extractor_file}") | |
if push_to_hub: | |
self._upload_modified_files( | |
save_directory, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=kwargs.get("token"), | |
) | |
return [output_feature_extractor_file] | |
def get_feature_extractor_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
""" | |
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a | |
feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] using `from_dict`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. | |
Returns: | |
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object. | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) | |
if os.path.isfile(pretrained_model_name_or_path): | |
resolved_feature_extractor_file = pretrained_model_name_or_path | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
feature_extractor_file = pretrained_model_name_or_path | |
resolved_feature_extractor_file = download_url(pretrained_model_name_or_path) | |
else: | |
feature_extractor_file = FEATURE_EXTRACTOR_NAME | |
try: | |
# Load from local folder or from cache or download from model Hub and cache | |
resolved_feature_extractor_file = cached_file( | |
pretrained_model_name_or_path, | |
feature_extractor_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
# the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load feature extractor for '{pretrained_model_name_or_path}'. If you were trying to load" | |
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" | |
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" | |
f" directory containing a {FEATURE_EXTRACTOR_NAME} file" | |
) | |
try: | |
# Load feature_extractor dict | |
with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
feature_extractor_dict = json.loads(text) | |
except json.JSONDecodeError: | |
raise EnvironmentError( | |
f"It looks like the config file at '{resolved_feature_extractor_file}' is not a valid JSON file." | |
) | |
if is_local: | |
logger.info(f"loading configuration file {resolved_feature_extractor_file}") | |
else: | |
logger.info( | |
f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" | |
) | |
if "auto_map" in feature_extractor_dict and not is_local: | |
feature_extractor_dict["auto_map"] = add_model_info_to_auto_map( | |
feature_extractor_dict["auto_map"], pretrained_model_name_or_path | |
) | |
return feature_extractor_dict, kwargs | |
def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: | |
""" | |
Instantiates a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a Python dictionary of | |
parameters. | |
Args: | |
feature_extractor_dict (`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be | |
retrieved from a pretrained checkpoint by leveraging the | |
[`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method. | |
kwargs (`Dict[str, Any]`): | |
Additional parameters from which to initialize the feature extractor object. | |
Returns: | |
[`~feature_extraction_utils.FeatureExtractionMixin`]: The feature extractor object instantiated from those | |
parameters. | |
""" | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
feature_extractor = cls(**feature_extractor_dict) | |
# Update feature_extractor with kwargs if needed | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(feature_extractor, key): | |
setattr(feature_extractor, key, value) | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
logger.info(f"Feature extractor {feature_extractor}") | |
if return_unused_kwargs: | |
return feature_extractor, kwargs | |
else: | |
return feature_extractor | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output["feature_extractor_type"] = self.__class__.__name__ | |
return output | |
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: | |
""" | |
Instantiates a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] from the path to | |
a JSON file of parameters. | |
Args: | |
json_file (`str` or `os.PathLike`): | |
Path to the JSON file containing the parameters. | |
Returns: | |
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature_extractor | |
object instantiated from that JSON file. | |
""" | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
feature_extractor_dict = json.loads(text) | |
return cls(**feature_extractor_dict) | |
def to_json_string(self) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Returns: | |
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. | |
""" | |
dictionary = self.to_dict() | |
for key, value in dictionary.items(): | |
if isinstance(value, np.ndarray): | |
dictionary[key] = value.tolist() | |
# make sure private name "_processor_class" is correctly | |
# saved as "processor_class" | |
_processor_class = dictionary.pop("_processor_class", None) | |
if _processor_class is not None: | |
dictionary["processor_class"] = _processor_class | |
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (`str` or `os.PathLike`): | |
Path to the JSON file in which this feature_extractor instance's parameters will be saved. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string()) | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |
def register_for_auto_class(cls, auto_class="AutoFeatureExtractor"): | |
""" | |
Register this class with a given auto class. This should only be used for custom feature extractors as the ones | |
in the library are already mapped with `AutoFeatureExtractor`. | |
<Tip warning={true}> | |
This API is experimental and may have some slight breaking changes in the next releases. | |
</Tip> | |
Args: | |
auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`): | |
The auto class to register this new feature extractor with. | |
""" | |
if not isinstance(auto_class, str): | |
auto_class = auto_class.__name__ | |
import transformers.models.auto as auto_module | |
if not hasattr(auto_module, auto_class): | |
raise ValueError(f"{auto_class} is not a valid auto class.") | |
cls._auto_class = auto_class | |
FeatureExtractionMixin.push_to_hub = copy_func(FeatureExtractionMixin.push_to_hub) | |
if FeatureExtractionMixin.push_to_hub.__doc__ is not None: | |
FeatureExtractionMixin.push_to_hub.__doc__ = FeatureExtractionMixin.push_to_hub.__doc__.format( | |
object="feature extractor", object_class="AutoFeatureExtractor", object_files="feature extractor file" | |
) | |