Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" XNLI utils (dataset loading and evaluation)""" | |
import os | |
from ...utils import logging | |
from .utils import DataProcessor, InputExample | |
logger = logging.get_logger(__name__) | |
class XnliProcessor(DataProcessor): | |
""" | |
Processor for the XNLI dataset. Adapted from | |
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207 | |
""" | |
def __init__(self, language, train_language=None): | |
self.language = language | |
self.train_language = train_language | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
lg = self.language if self.train_language is None else self.train_language | |
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv")) | |
examples = [] | |
for i, line in enumerate(lines): | |
if i == 0: | |
continue | |
guid = f"train-{i}" | |
text_a = line[0] | |
text_b = line[1] | |
label = "contradiction" if line[2] == "contradictory" else line[2] | |
if not isinstance(text_a, str): | |
raise ValueError(f"Training input {text_a} is not a string") | |
if not isinstance(text_b, str): | |
raise ValueError(f"Training input {text_b} is not a string") | |
if not isinstance(label, str): | |
raise ValueError(f"Training label {label} is not a string") | |
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv")) | |
examples = [] | |
for i, line in enumerate(lines): | |
if i == 0: | |
continue | |
language = line[0] | |
if language != self.language: | |
continue | |
guid = f"test-{i}" | |
text_a = line[6] | |
text_b = line[7] | |
label = line[1] | |
if not isinstance(text_a, str): | |
raise ValueError(f"Training input {text_a} is not a string") | |
if not isinstance(text_b, str): | |
raise ValueError(f"Training input {text_b} is not a string") | |
if not isinstance(label, str): | |
raise ValueError(f"Training label {label} is not a string") | |
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) | |
return examples | |
def get_labels(self): | |
"""See base class.""" | |
return ["contradiction", "entailment", "neutral"] | |
xnli_processors = { | |
"xnli": XnliProcessor, | |
} | |
xnli_output_modes = { | |
"xnli": "classification", | |
} | |
xnli_tasks_num_labels = { | |
"xnli": 3, | |
} | |