Spaces:
Starting
on
T4
Starting
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
from typing import Type | |
class MLPBlock(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
mlp_dim: int, | |
act: Type[nn.Module] = nn.GELU, | |
) -> None: | |
super().__init__() | |
self.lin1 = nn.Linear(embedding_dim, mlp_dim) | |
self.lin2 = nn.Linear(mlp_dim, embedding_dim) | |
self.act = act() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.lin2(self.act(self.lin1(x))) | |
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa | |
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |