|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to |
|
update `find_best_threshold` scripts for SQuAD V2.0 |
|
|
|
In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an |
|
additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted |
|
probability that a question is unanswerable. |
|
""" |
|
|
|
|
|
import collections |
|
import json |
|
import math |
|
import re |
|
import string |
|
|
|
from ...models.bert import BasicTokenizer |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def normalize_answer(s): |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
|
|
def remove_articles(text): |
|
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) |
|
return re.sub(regex, " ", text) |
|
|
|
def white_space_fix(text): |
|
return " ".join(text.split()) |
|
|
|
def remove_punc(text): |
|
exclude = set(string.punctuation) |
|
return "".join(ch for ch in text if ch not in exclude) |
|
|
|
def lower(text): |
|
return text.lower() |
|
|
|
return white_space_fix(remove_articles(remove_punc(lower(s)))) |
|
|
|
|
|
def get_tokens(s): |
|
if not s: |
|
return [] |
|
return normalize_answer(s).split() |
|
|
|
|
|
def compute_exact(a_gold, a_pred): |
|
return int(normalize_answer(a_gold) == normalize_answer(a_pred)) |
|
|
|
|
|
def compute_f1(a_gold, a_pred): |
|
gold_toks = get_tokens(a_gold) |
|
pred_toks = get_tokens(a_pred) |
|
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) |
|
num_same = sum(common.values()) |
|
if len(gold_toks) == 0 or len(pred_toks) == 0: |
|
|
|
return int(gold_toks == pred_toks) |
|
if num_same == 0: |
|
return 0 |
|
precision = 1.0 * num_same / len(pred_toks) |
|
recall = 1.0 * num_same / len(gold_toks) |
|
f1 = (2 * precision * recall) / (precision + recall) |
|
return f1 |
|
|
|
|
|
def get_raw_scores(examples, preds): |
|
""" |
|
Computes the exact and f1 scores from the examples and the model predictions |
|
""" |
|
exact_scores = {} |
|
f1_scores = {} |
|
|
|
for example in examples: |
|
qas_id = example.qas_id |
|
gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])] |
|
|
|
if not gold_answers: |
|
|
|
gold_answers = [""] |
|
|
|
if qas_id not in preds: |
|
print(f"Missing prediction for {qas_id}") |
|
continue |
|
|
|
prediction = preds[qas_id] |
|
exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers) |
|
f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers) |
|
|
|
return exact_scores, f1_scores |
|
|
|
|
|
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): |
|
new_scores = {} |
|
for qid, s in scores.items(): |
|
pred_na = na_probs[qid] > na_prob_thresh |
|
if pred_na: |
|
new_scores[qid] = float(not qid_to_has_ans[qid]) |
|
else: |
|
new_scores[qid] = s |
|
return new_scores |
|
|
|
|
|
def make_eval_dict(exact_scores, f1_scores, qid_list=None): |
|
if not qid_list: |
|
total = len(exact_scores) |
|
return collections.OrderedDict( |
|
[ |
|
("exact", 100.0 * sum(exact_scores.values()) / total), |
|
("f1", 100.0 * sum(f1_scores.values()) / total), |
|
("total", total), |
|
] |
|
) |
|
else: |
|
total = len(qid_list) |
|
return collections.OrderedDict( |
|
[ |
|
("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), |
|
("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), |
|
("total", total), |
|
] |
|
) |
|
|
|
|
|
def merge_eval(main_eval, new_eval, prefix): |
|
for k in new_eval: |
|
main_eval[f"{prefix}_{k}"] = new_eval[k] |
|
|
|
|
|
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans): |
|
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) |
|
cur_score = num_no_ans |
|
best_score = cur_score |
|
best_thresh = 0.0 |
|
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) |
|
for i, qid in enumerate(qid_list): |
|
if qid not in scores: |
|
continue |
|
if qid_to_has_ans[qid]: |
|
diff = scores[qid] |
|
else: |
|
if preds[qid]: |
|
diff = -1 |
|
else: |
|
diff = 0 |
|
cur_score += diff |
|
if cur_score > best_score: |
|
best_score = cur_score |
|
best_thresh = na_probs[qid] |
|
|
|
has_ans_score, has_ans_cnt = 0, 0 |
|
for qid in qid_list: |
|
if not qid_to_has_ans[qid]: |
|
continue |
|
has_ans_cnt += 1 |
|
|
|
if qid not in scores: |
|
continue |
|
has_ans_score += scores[qid] |
|
|
|
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt |
|
|
|
|
|
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): |
|
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans) |
|
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans) |
|
main_eval["best_exact"] = best_exact |
|
main_eval["best_exact_thresh"] = exact_thresh |
|
main_eval["best_f1"] = best_f1 |
|
main_eval["best_f1_thresh"] = f1_thresh |
|
main_eval["has_ans_exact"] = has_ans_exact |
|
main_eval["has_ans_f1"] = has_ans_f1 |
|
|
|
|
|
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans): |
|
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) |
|
cur_score = num_no_ans |
|
best_score = cur_score |
|
best_thresh = 0.0 |
|
qid_list = sorted(na_probs, key=lambda k: na_probs[k]) |
|
for _, qid in enumerate(qid_list): |
|
if qid not in scores: |
|
continue |
|
if qid_to_has_ans[qid]: |
|
diff = scores[qid] |
|
else: |
|
if preds[qid]: |
|
diff = -1 |
|
else: |
|
diff = 0 |
|
cur_score += diff |
|
if cur_score > best_score: |
|
best_score = cur_score |
|
best_thresh = na_probs[qid] |
|
return 100.0 * best_score / len(scores), best_thresh |
|
|
|
|
|
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans): |
|
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans) |
|
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans) |
|
|
|
main_eval["best_exact"] = best_exact |
|
main_eval["best_exact_thresh"] = exact_thresh |
|
main_eval["best_f1"] = best_f1 |
|
main_eval["best_f1_thresh"] = f1_thresh |
|
|
|
|
|
def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0): |
|
qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples} |
|
has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer] |
|
no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer] |
|
|
|
if no_answer_probs is None: |
|
no_answer_probs = {k: 0.0 for k in preds} |
|
|
|
exact, f1 = get_raw_scores(examples, preds) |
|
|
|
exact_threshold = apply_no_ans_threshold( |
|
exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold |
|
) |
|
f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold) |
|
|
|
evaluation = make_eval_dict(exact_threshold, f1_threshold) |
|
|
|
if has_answer_qids: |
|
has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids) |
|
merge_eval(evaluation, has_ans_eval, "HasAns") |
|
|
|
if no_answer_qids: |
|
no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids) |
|
merge_eval(evaluation, no_ans_eval, "NoAns") |
|
|
|
if no_answer_probs: |
|
find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer) |
|
|
|
return evaluation |
|
|
|
|
|
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): |
|
"""Project the tokenized prediction back to the original text.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _strip_spaces(text): |
|
ns_chars = [] |
|
ns_to_s_map = collections.OrderedDict() |
|
for i, c in enumerate(text): |
|
if c == " ": |
|
continue |
|
ns_to_s_map[len(ns_chars)] = i |
|
ns_chars.append(c) |
|
ns_text = "".join(ns_chars) |
|
return (ns_text, ns_to_s_map) |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = BasicTokenizer(do_lower_case=do_lower_case) |
|
|
|
tok_text = " ".join(tokenizer.tokenize(orig_text)) |
|
|
|
start_position = tok_text.find(pred_text) |
|
if start_position == -1: |
|
if verbose_logging: |
|
logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'") |
|
return orig_text |
|
end_position = start_position + len(pred_text) - 1 |
|
|
|
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) |
|
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) |
|
|
|
if len(orig_ns_text) != len(tok_ns_text): |
|
if verbose_logging: |
|
logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'") |
|
return orig_text |
|
|
|
|
|
|
|
tok_s_to_ns_map = {} |
|
for i, tok_index in tok_ns_to_s_map.items(): |
|
tok_s_to_ns_map[tok_index] = i |
|
|
|
orig_start_position = None |
|
if start_position in tok_s_to_ns_map: |
|
ns_start_position = tok_s_to_ns_map[start_position] |
|
if ns_start_position in orig_ns_to_s_map: |
|
orig_start_position = orig_ns_to_s_map[ns_start_position] |
|
|
|
if orig_start_position is None: |
|
if verbose_logging: |
|
logger.info("Couldn't map start position") |
|
return orig_text |
|
|
|
orig_end_position = None |
|
if end_position in tok_s_to_ns_map: |
|
ns_end_position = tok_s_to_ns_map[end_position] |
|
if ns_end_position in orig_ns_to_s_map: |
|
orig_end_position = orig_ns_to_s_map[ns_end_position] |
|
|
|
if orig_end_position is None: |
|
if verbose_logging: |
|
logger.info("Couldn't map end position") |
|
return orig_text |
|
|
|
output_text = orig_text[orig_start_position : (orig_end_position + 1)] |
|
return output_text |
|
|
|
|
|
def _get_best_indexes(logits, n_best_size): |
|
"""Get the n-best logits from a list.""" |
|
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) |
|
|
|
best_indexes = [] |
|
for i in range(len(index_and_score)): |
|
if i >= n_best_size: |
|
break |
|
best_indexes.append(index_and_score[i][0]) |
|
return best_indexes |
|
|
|
|
|
def _compute_softmax(scores): |
|
"""Compute softmax probability over raw logits.""" |
|
if not scores: |
|
return [] |
|
|
|
max_score = None |
|
for score in scores: |
|
if max_score is None or score > max_score: |
|
max_score = score |
|
|
|
exp_scores = [] |
|
total_sum = 0.0 |
|
for score in scores: |
|
x = math.exp(score - max_score) |
|
exp_scores.append(x) |
|
total_sum += x |
|
|
|
probs = [] |
|
for score in exp_scores: |
|
probs.append(score / total_sum) |
|
return probs |
|
|
|
|
|
def compute_predictions_logits( |
|
all_examples, |
|
all_features, |
|
all_results, |
|
n_best_size, |
|
max_answer_length, |
|
do_lower_case, |
|
output_prediction_file, |
|
output_nbest_file, |
|
output_null_log_odds_file, |
|
verbose_logging, |
|
version_2_with_negative, |
|
null_score_diff_threshold, |
|
tokenizer, |
|
): |
|
"""Write final predictions to the json file and log-odds of null if needed.""" |
|
if output_prediction_file: |
|
logger.info(f"Writing predictions to: {output_prediction_file}") |
|
if output_nbest_file: |
|
logger.info(f"Writing nbest to: {output_nbest_file}") |
|
if output_null_log_odds_file and version_2_with_negative: |
|
logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}") |
|
|
|
example_index_to_features = collections.defaultdict(list) |
|
for feature in all_features: |
|
example_index_to_features[feature.example_index].append(feature) |
|
|
|
unique_id_to_result = {} |
|
for result in all_results: |
|
unique_id_to_result[result.unique_id] = result |
|
|
|
_PrelimPrediction = collections.namedtuple( |
|
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"] |
|
) |
|
|
|
all_predictions = collections.OrderedDict() |
|
all_nbest_json = collections.OrderedDict() |
|
scores_diff_json = collections.OrderedDict() |
|
|
|
for example_index, example in enumerate(all_examples): |
|
features = example_index_to_features[example_index] |
|
|
|
prelim_predictions = [] |
|
|
|
score_null = 1000000 |
|
min_null_feature_index = 0 |
|
null_start_logit = 0 |
|
null_end_logit = 0 |
|
for feature_index, feature in enumerate(features): |
|
result = unique_id_to_result[feature.unique_id] |
|
start_indexes = _get_best_indexes(result.start_logits, n_best_size) |
|
end_indexes = _get_best_indexes(result.end_logits, n_best_size) |
|
|
|
if version_2_with_negative: |
|
feature_null_score = result.start_logits[0] + result.end_logits[0] |
|
if feature_null_score < score_null: |
|
score_null = feature_null_score |
|
min_null_feature_index = feature_index |
|
null_start_logit = result.start_logits[0] |
|
null_end_logit = result.end_logits[0] |
|
for start_index in start_indexes: |
|
for end_index in end_indexes: |
|
|
|
|
|
|
|
if start_index >= len(feature.tokens): |
|
continue |
|
if end_index >= len(feature.tokens): |
|
continue |
|
if start_index not in feature.token_to_orig_map: |
|
continue |
|
if end_index not in feature.token_to_orig_map: |
|
continue |
|
if not feature.token_is_max_context.get(start_index, False): |
|
continue |
|
if end_index < start_index: |
|
continue |
|
length = end_index - start_index + 1 |
|
if length > max_answer_length: |
|
continue |
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=feature_index, |
|
start_index=start_index, |
|
end_index=end_index, |
|
start_logit=result.start_logits[start_index], |
|
end_logit=result.end_logits[end_index], |
|
) |
|
) |
|
if version_2_with_negative: |
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=min_null_feature_index, |
|
start_index=0, |
|
end_index=0, |
|
start_logit=null_start_logit, |
|
end_logit=null_end_logit, |
|
) |
|
) |
|
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) |
|
|
|
_NbestPrediction = collections.namedtuple( |
|
"NbestPrediction", ["text", "start_logit", "end_logit"] |
|
) |
|
|
|
seen_predictions = {} |
|
nbest = [] |
|
for pred in prelim_predictions: |
|
if len(nbest) >= n_best_size: |
|
break |
|
feature = features[pred.feature_index] |
|
if pred.start_index > 0: |
|
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] |
|
orig_doc_start = feature.token_to_orig_map[pred.start_index] |
|
orig_doc_end = feature.token_to_orig_map[pred.end_index] |
|
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] |
|
|
|
tok_text = tokenizer.convert_tokens_to_string(tok_tokens) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tok_text = tok_text.strip() |
|
tok_text = " ".join(tok_text.split()) |
|
orig_text = " ".join(orig_tokens) |
|
|
|
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) |
|
if final_text in seen_predictions: |
|
continue |
|
|
|
seen_predictions[final_text] = True |
|
else: |
|
final_text = "" |
|
seen_predictions[final_text] = True |
|
|
|
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) |
|
|
|
if version_2_with_negative: |
|
if "" not in seen_predictions: |
|
nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit)) |
|
|
|
|
|
|
|
if len(nbest) == 1: |
|
nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) |
|
|
|
|
|
|
|
if not nbest: |
|
nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) |
|
|
|
if len(nbest) < 1: |
|
raise ValueError("No valid predictions") |
|
|
|
total_scores = [] |
|
best_non_null_entry = None |
|
for entry in nbest: |
|
total_scores.append(entry.start_logit + entry.end_logit) |
|
if not best_non_null_entry: |
|
if entry.text: |
|
best_non_null_entry = entry |
|
|
|
probs = _compute_softmax(total_scores) |
|
|
|
nbest_json = [] |
|
for i, entry in enumerate(nbest): |
|
output = collections.OrderedDict() |
|
output["text"] = entry.text |
|
output["probability"] = probs[i] |
|
output["start_logit"] = entry.start_logit |
|
output["end_logit"] = entry.end_logit |
|
nbest_json.append(output) |
|
|
|
if len(nbest_json) < 1: |
|
raise ValueError("No valid predictions") |
|
|
|
if not version_2_with_negative: |
|
all_predictions[example.qas_id] = nbest_json[0]["text"] |
|
else: |
|
|
|
score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit) |
|
scores_diff_json[example.qas_id] = score_diff |
|
if score_diff > null_score_diff_threshold: |
|
all_predictions[example.qas_id] = "" |
|
else: |
|
all_predictions[example.qas_id] = best_non_null_entry.text |
|
all_nbest_json[example.qas_id] = nbest_json |
|
|
|
if output_prediction_file: |
|
with open(output_prediction_file, "w") as writer: |
|
writer.write(json.dumps(all_predictions, indent=4) + "\n") |
|
|
|
if output_nbest_file: |
|
with open(output_nbest_file, "w") as writer: |
|
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") |
|
|
|
if output_null_log_odds_file and version_2_with_negative: |
|
with open(output_null_log_odds_file, "w") as writer: |
|
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") |
|
|
|
return all_predictions |
|
|
|
|
|
def compute_predictions_log_probs( |
|
all_examples, |
|
all_features, |
|
all_results, |
|
n_best_size, |
|
max_answer_length, |
|
output_prediction_file, |
|
output_nbest_file, |
|
output_null_log_odds_file, |
|
start_n_top, |
|
end_n_top, |
|
version_2_with_negative, |
|
tokenizer, |
|
verbose_logging, |
|
): |
|
""" |
|
XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of |
|
null if needed. |
|
|
|
Requires utils_squad_evaluate.py |
|
""" |
|
_PrelimPrediction = collections.namedtuple( |
|
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"] |
|
) |
|
|
|
_NbestPrediction = collections.namedtuple( |
|
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"] |
|
) |
|
|
|
logger.info(f"Writing predictions to: {output_prediction_file}") |
|
|
|
example_index_to_features = collections.defaultdict(list) |
|
for feature in all_features: |
|
example_index_to_features[feature.example_index].append(feature) |
|
|
|
unique_id_to_result = {} |
|
for result in all_results: |
|
unique_id_to_result[result.unique_id] = result |
|
|
|
all_predictions = collections.OrderedDict() |
|
all_nbest_json = collections.OrderedDict() |
|
scores_diff_json = collections.OrderedDict() |
|
|
|
for example_index, example in enumerate(all_examples): |
|
features = example_index_to_features[example_index] |
|
|
|
prelim_predictions = [] |
|
|
|
score_null = 1000000 |
|
|
|
for feature_index, feature in enumerate(features): |
|
result = unique_id_to_result[feature.unique_id] |
|
|
|
cur_null_score = result.cls_logits |
|
|
|
|
|
score_null = min(score_null, cur_null_score) |
|
|
|
for i in range(start_n_top): |
|
for j in range(end_n_top): |
|
start_log_prob = result.start_logits[i] |
|
start_index = result.start_top_index[i] |
|
|
|
j_index = i * end_n_top + j |
|
|
|
end_log_prob = result.end_logits[j_index] |
|
end_index = result.end_top_index[j_index] |
|
|
|
|
|
|
|
|
|
if start_index >= feature.paragraph_len - 1: |
|
continue |
|
if end_index >= feature.paragraph_len - 1: |
|
continue |
|
|
|
if not feature.token_is_max_context.get(start_index, False): |
|
continue |
|
if end_index < start_index: |
|
continue |
|
length = end_index - start_index + 1 |
|
if length > max_answer_length: |
|
continue |
|
|
|
prelim_predictions.append( |
|
_PrelimPrediction( |
|
feature_index=feature_index, |
|
start_index=start_index, |
|
end_index=end_index, |
|
start_log_prob=start_log_prob, |
|
end_log_prob=end_log_prob, |
|
) |
|
) |
|
|
|
prelim_predictions = sorted( |
|
prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True |
|
) |
|
|
|
seen_predictions = {} |
|
nbest = [] |
|
for pred in prelim_predictions: |
|
if len(nbest) >= n_best_size: |
|
break |
|
feature = features[pred.feature_index] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)] |
|
orig_doc_start = feature.token_to_orig_map[pred.start_index] |
|
orig_doc_end = feature.token_to_orig_map[pred.end_index] |
|
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)] |
|
tok_text = tokenizer.convert_tokens_to_string(tok_tokens) |
|
|
|
|
|
tok_text = tok_text.strip() |
|
tok_text = " ".join(tok_text.split()) |
|
orig_text = " ".join(orig_tokens) |
|
|
|
if hasattr(tokenizer, "do_lower_case"): |
|
do_lower_case = tokenizer.do_lower_case |
|
else: |
|
do_lower_case = tokenizer.do_lowercase_and_remove_accent |
|
|
|
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) |
|
|
|
if final_text in seen_predictions: |
|
continue |
|
|
|
seen_predictions[final_text] = True |
|
|
|
nbest.append( |
|
_NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob) |
|
) |
|
|
|
|
|
|
|
if not nbest: |
|
nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6)) |
|
|
|
total_scores = [] |
|
best_non_null_entry = None |
|
for entry in nbest: |
|
total_scores.append(entry.start_log_prob + entry.end_log_prob) |
|
if not best_non_null_entry: |
|
best_non_null_entry = entry |
|
|
|
probs = _compute_softmax(total_scores) |
|
|
|
nbest_json = [] |
|
for i, entry in enumerate(nbest): |
|
output = collections.OrderedDict() |
|
output["text"] = entry.text |
|
output["probability"] = probs[i] |
|
output["start_log_prob"] = entry.start_log_prob |
|
output["end_log_prob"] = entry.end_log_prob |
|
nbest_json.append(output) |
|
|
|
if len(nbest_json) < 1: |
|
raise ValueError("No valid predictions") |
|
if best_non_null_entry is None: |
|
raise ValueError("No valid predictions") |
|
|
|
score_diff = score_null |
|
scores_diff_json[example.qas_id] = score_diff |
|
|
|
|
|
all_predictions[example.qas_id] = best_non_null_entry.text |
|
|
|
all_nbest_json[example.qas_id] = nbest_json |
|
|
|
with open(output_prediction_file, "w") as writer: |
|
writer.write(json.dumps(all_predictions, indent=4) + "\n") |
|
|
|
with open(output_nbest_file, "w") as writer: |
|
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") |
|
|
|
if version_2_with_negative: |
|
with open(output_null_log_odds_file, "w") as writer: |
|
writer.write(json.dumps(scores_diff_json, indent=4) + "\n") |
|
|
|
return all_predictions |
|
|