Spaces:
Starting
on
T4
Starting
on
T4
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
from functools import partial | |
from multiprocessing import Pool, cpu_count | |
import numpy as np | |
from tqdm import tqdm | |
from ...models.bert.tokenization_bert import whitespace_tokenize | |
from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy | |
from ...utils import is_tf_available, is_torch_available, logging | |
from .utils import DataProcessor | |
# Store the tokenizers which insert 2 separators tokens | |
MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"} | |
if is_torch_available(): | |
import torch | |
from torch.utils.data import TensorDataset | |
if is_tf_available(): | |
import tensorflow as tf | |
logger = logging.get_logger(__name__) | |
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): | |
"""Returns tokenized answer spans that better match the annotated answer.""" | |
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) | |
for new_start in range(input_start, input_end + 1): | |
for new_end in range(input_end, new_start - 1, -1): | |
text_span = " ".join(doc_tokens[new_start : (new_end + 1)]) | |
if text_span == tok_answer_text: | |
return (new_start, new_end) | |
return (input_start, input_end) | |
def _check_is_max_context(doc_spans, cur_span_index, position): | |
"""Check if this is the 'max context' doc span for the token.""" | |
best_score = None | |
best_span_index = None | |
for span_index, doc_span in enumerate(doc_spans): | |
end = doc_span.start + doc_span.length - 1 | |
if position < doc_span.start: | |
continue | |
if position > end: | |
continue | |
num_left_context = position - doc_span.start | |
num_right_context = end - position | |
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length | |
if best_score is None or score > best_score: | |
best_score = score | |
best_span_index = span_index | |
return cur_span_index == best_span_index | |
def _new_check_is_max_context(doc_spans, cur_span_index, position): | |
"""Check if this is the 'max context' doc span for the token.""" | |
# if len(doc_spans) == 1: | |
# return True | |
best_score = None | |
best_span_index = None | |
for span_index, doc_span in enumerate(doc_spans): | |
end = doc_span["start"] + doc_span["length"] - 1 | |
if position < doc_span["start"]: | |
continue | |
if position > end: | |
continue | |
num_left_context = position - doc_span["start"] | |
num_right_context = end - position | |
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"] | |
if best_score is None or score > best_score: | |
best_score = score | |
best_span_index = span_index | |
return cur_span_index == best_span_index | |
def _is_whitespace(c): | |
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: | |
return True | |
return False | |
def squad_convert_example_to_features( | |
example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training | |
): | |
features = [] | |
if is_training and not example.is_impossible: | |
# Get start and end position | |
start_position = example.start_position | |
end_position = example.end_position | |
# If the answer cannot be found in the text, then skip this example. | |
actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)]) | |
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text)) | |
if actual_text.find(cleaned_answer_text) == -1: | |
logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'") | |
return [] | |
tok_to_orig_index = [] | |
orig_to_tok_index = [] | |
all_doc_tokens = [] | |
for i, token in enumerate(example.doc_tokens): | |
orig_to_tok_index.append(len(all_doc_tokens)) | |
if tokenizer.__class__.__name__ in [ | |
"RobertaTokenizer", | |
"LongformerTokenizer", | |
"BartTokenizer", | |
"RobertaTokenizerFast", | |
"LongformerTokenizerFast", | |
"BartTokenizerFast", | |
]: | |
sub_tokens = tokenizer.tokenize(token, add_prefix_space=True) | |
else: | |
sub_tokens = tokenizer.tokenize(token) | |
for sub_token in sub_tokens: | |
tok_to_orig_index.append(i) | |
all_doc_tokens.append(sub_token) | |
if is_training and not example.is_impossible: | |
tok_start_position = orig_to_tok_index[example.start_position] | |
if example.end_position < len(example.doc_tokens) - 1: | |
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 | |
else: | |
tok_end_position = len(all_doc_tokens) - 1 | |
(tok_start_position, tok_end_position) = _improve_answer_span( | |
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text | |
) | |
spans = [] | |
truncated_query = tokenizer.encode( | |
example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length | |
) | |
# Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling | |
# in the way they compute mask of added tokens. | |
tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower() | |
sequence_added_tokens = ( | |
tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1 | |
if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET | |
else tokenizer.model_max_length - tokenizer.max_len_single_sentence | |
) | |
sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair | |
span_doc_tokens = all_doc_tokens | |
while len(spans) * doc_stride < len(all_doc_tokens): | |
# Define the side we want to truncate / pad and the text/pair sorting | |
if tokenizer.padding_side == "right": | |
texts = truncated_query | |
pairs = span_doc_tokens | |
truncation = TruncationStrategy.ONLY_SECOND.value | |
else: | |
texts = span_doc_tokens | |
pairs = truncated_query | |
truncation = TruncationStrategy.ONLY_FIRST.value | |
encoded_dict = tokenizer.encode_plus( # TODO(thom) update this logic | |
texts, | |
pairs, | |
truncation=truncation, | |
padding=padding_strategy, | |
max_length=max_seq_length, | |
return_overflowing_tokens=True, | |
stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens, | |
return_token_type_ids=True, | |
) | |
paragraph_len = min( | |
len(all_doc_tokens) - len(spans) * doc_stride, | |
max_seq_length - len(truncated_query) - sequence_pair_added_tokens, | |
) | |
if tokenizer.pad_token_id in encoded_dict["input_ids"]: | |
if tokenizer.padding_side == "right": | |
non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)] | |
else: | |
last_padding_id_position = ( | |
len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id) | |
) | |
non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :] | |
else: | |
non_padded_ids = encoded_dict["input_ids"] | |
tokens = tokenizer.convert_ids_to_tokens(non_padded_ids) | |
token_to_orig_map = {} | |
for i in range(paragraph_len): | |
index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i | |
token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i] | |
encoded_dict["paragraph_len"] = paragraph_len | |
encoded_dict["tokens"] = tokens | |
encoded_dict["token_to_orig_map"] = token_to_orig_map | |
encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens | |
encoded_dict["token_is_max_context"] = {} | |
encoded_dict["start"] = len(spans) * doc_stride | |
encoded_dict["length"] = paragraph_len | |
spans.append(encoded_dict) | |
if "overflowing_tokens" not in encoded_dict or ( | |
"overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0 | |
): | |
break | |
span_doc_tokens = encoded_dict["overflowing_tokens"] | |
for doc_span_index in range(len(spans)): | |
for j in range(spans[doc_span_index]["paragraph_len"]): | |
is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j) | |
index = ( | |
j | |
if tokenizer.padding_side == "left" | |
else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j | |
) | |
spans[doc_span_index]["token_is_max_context"][index] = is_max_context | |
for span in spans: | |
# Identify the position of the CLS token | |
cls_index = span["input_ids"].index(tokenizer.cls_token_id) | |
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) | |
# Original TF implementation also keep the classification token (set to 0) | |
p_mask = np.ones_like(span["token_type_ids"]) | |
if tokenizer.padding_side == "right": | |
p_mask[len(truncated_query) + sequence_added_tokens :] = 0 | |
else: | |
p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0 | |
pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id) | |
special_token_indices = np.asarray( | |
tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True) | |
).nonzero() | |
p_mask[pad_token_indices] = 1 | |
p_mask[special_token_indices] = 1 | |
# Set the cls index to 0: the CLS index can be used for impossible answers | |
p_mask[cls_index] = 0 | |
span_is_impossible = example.is_impossible | |
start_position = 0 | |
end_position = 0 | |
if is_training and not span_is_impossible: | |
# For training, if our document chunk does not contain an annotation | |
# we throw it out, since there is nothing to predict. | |
doc_start = span["start"] | |
doc_end = span["start"] + span["length"] - 1 | |
out_of_span = False | |
if not (tok_start_position >= doc_start and tok_end_position <= doc_end): | |
out_of_span = True | |
if out_of_span: | |
start_position = cls_index | |
end_position = cls_index | |
span_is_impossible = True | |
else: | |
if tokenizer.padding_side == "left": | |
doc_offset = 0 | |
else: | |
doc_offset = len(truncated_query) + sequence_added_tokens | |
start_position = tok_start_position - doc_start + doc_offset | |
end_position = tok_end_position - doc_start + doc_offset | |
features.append( | |
SquadFeatures( | |
span["input_ids"], | |
span["attention_mask"], | |
span["token_type_ids"], | |
cls_index, | |
p_mask.tolist(), | |
example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing. | |
unique_id=0, | |
paragraph_len=span["paragraph_len"], | |
token_is_max_context=span["token_is_max_context"], | |
tokens=span["tokens"], | |
token_to_orig_map=span["token_to_orig_map"], | |
start_position=start_position, | |
end_position=end_position, | |
is_impossible=span_is_impossible, | |
qas_id=example.qas_id, | |
) | |
) | |
return features | |
def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase): | |
global tokenizer | |
tokenizer = tokenizer_for_convert | |
def squad_convert_examples_to_features( | |
examples, | |
tokenizer, | |
max_seq_length, | |
doc_stride, | |
max_query_length, | |
is_training, | |
padding_strategy="max_length", | |
return_dataset=False, | |
threads=1, | |
tqdm_enabled=True, | |
): | |
""" | |
Converts a list of examples into a list of features that can be directly given as input to a model. It is | |
model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs. | |
Args: | |
examples: list of [`~data.processors.squad.SquadExample`] | |
tokenizer: an instance of a child of [`PreTrainedTokenizer`] | |
max_seq_length: The maximum sequence length of the inputs. | |
doc_stride: The stride used when the context is too large and is split across several features. | |
max_query_length: The maximum length of the query. | |
is_training: whether to create features for model evaluation or model training. | |
padding_strategy: Default to "max_length". Which padding strategy to use | |
return_dataset: Default False. Either 'pt' or 'tf'. | |
if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset | |
threads: multiple processing threads. | |
Returns: | |
list of [`~data.processors.squad.SquadFeatures`] | |
Example: | |
```python | |
processor = SquadV2Processor() | |
examples = processor.get_dev_examples(data_dir) | |
features = squad_convert_examples_to_features( | |
examples=examples, | |
tokenizer=tokenizer, | |
max_seq_length=args.max_seq_length, | |
doc_stride=args.doc_stride, | |
max_query_length=args.max_query_length, | |
is_training=not evaluate, | |
) | |
```""" | |
# Defining helper methods | |
features = [] | |
threads = min(threads, cpu_count()) | |
with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p: | |
annotate_ = partial( | |
squad_convert_example_to_features, | |
max_seq_length=max_seq_length, | |
doc_stride=doc_stride, | |
max_query_length=max_query_length, | |
padding_strategy=padding_strategy, | |
is_training=is_training, | |
) | |
features = list( | |
tqdm( | |
p.imap(annotate_, examples, chunksize=32), | |
total=len(examples), | |
desc="convert squad examples to features", | |
disable=not tqdm_enabled, | |
) | |
) | |
new_features = [] | |
unique_id = 1000000000 | |
example_index = 0 | |
for example_features in tqdm( | |
features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled | |
): | |
if not example_features: | |
continue | |
for example_feature in example_features: | |
example_feature.example_index = example_index | |
example_feature.unique_id = unique_id | |
new_features.append(example_feature) | |
unique_id += 1 | |
example_index += 1 | |
features = new_features | |
del new_features | |
if return_dataset == "pt": | |
if not is_torch_available(): | |
raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.") | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long) | |
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float) | |
all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float) | |
if not is_training: | |
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long) | |
dataset = TensorDataset( | |
all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask | |
) | |
else: | |
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) | |
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) | |
dataset = TensorDataset( | |
all_input_ids, | |
all_attention_masks, | |
all_token_type_ids, | |
all_start_positions, | |
all_end_positions, | |
all_cls_index, | |
all_p_mask, | |
all_is_impossible, | |
) | |
return features, dataset | |
elif return_dataset == "tf": | |
if not is_tf_available(): | |
raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.") | |
def gen(): | |
for i, ex in enumerate(features): | |
if ex.token_type_ids is None: | |
yield ( | |
{ | |
"input_ids": ex.input_ids, | |
"attention_mask": ex.attention_mask, | |
"feature_index": i, | |
"qas_id": ex.qas_id, | |
}, | |
{ | |
"start_positions": ex.start_position, | |
"end_positions": ex.end_position, | |
"cls_index": ex.cls_index, | |
"p_mask": ex.p_mask, | |
"is_impossible": ex.is_impossible, | |
}, | |
) | |
else: | |
yield ( | |
{ | |
"input_ids": ex.input_ids, | |
"attention_mask": ex.attention_mask, | |
"token_type_ids": ex.token_type_ids, | |
"feature_index": i, | |
"qas_id": ex.qas_id, | |
}, | |
{ | |
"start_positions": ex.start_position, | |
"end_positions": ex.end_position, | |
"cls_index": ex.cls_index, | |
"p_mask": ex.p_mask, | |
"is_impossible": ex.is_impossible, | |
}, | |
) | |
# Why have we split the batch into a tuple? PyTorch just has a list of tensors. | |
if "token_type_ids" in tokenizer.model_input_names: | |
train_types = ( | |
{ | |
"input_ids": tf.int32, | |
"attention_mask": tf.int32, | |
"token_type_ids": tf.int32, | |
"feature_index": tf.int64, | |
"qas_id": tf.string, | |
}, | |
{ | |
"start_positions": tf.int64, | |
"end_positions": tf.int64, | |
"cls_index": tf.int64, | |
"p_mask": tf.int32, | |
"is_impossible": tf.int32, | |
}, | |
) | |
train_shapes = ( | |
{ | |
"input_ids": tf.TensorShape([None]), | |
"attention_mask": tf.TensorShape([None]), | |
"token_type_ids": tf.TensorShape([None]), | |
"feature_index": tf.TensorShape([]), | |
"qas_id": tf.TensorShape([]), | |
}, | |
{ | |
"start_positions": tf.TensorShape([]), | |
"end_positions": tf.TensorShape([]), | |
"cls_index": tf.TensorShape([]), | |
"p_mask": tf.TensorShape([None]), | |
"is_impossible": tf.TensorShape([]), | |
}, | |
) | |
else: | |
train_types = ( | |
{"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string}, | |
{ | |
"start_positions": tf.int64, | |
"end_positions": tf.int64, | |
"cls_index": tf.int64, | |
"p_mask": tf.int32, | |
"is_impossible": tf.int32, | |
}, | |
) | |
train_shapes = ( | |
{ | |
"input_ids": tf.TensorShape([None]), | |
"attention_mask": tf.TensorShape([None]), | |
"feature_index": tf.TensorShape([]), | |
"qas_id": tf.TensorShape([]), | |
}, | |
{ | |
"start_positions": tf.TensorShape([]), | |
"end_positions": tf.TensorShape([]), | |
"cls_index": tf.TensorShape([]), | |
"p_mask": tf.TensorShape([None]), | |
"is_impossible": tf.TensorShape([]), | |
}, | |
) | |
return tf.data.Dataset.from_generator(gen, train_types, train_shapes) | |
else: | |
return features | |
class SquadProcessor(DataProcessor): | |
""" | |
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and | |
version 2.0 of SQuAD, respectively. | |
""" | |
train_file = None | |
dev_file = None | |
def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False): | |
if not evaluate: | |
answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8") | |
answer_start = tensor_dict["answers"]["answer_start"][0].numpy() | |
answers = [] | |
else: | |
answers = [ | |
{"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")} | |
for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"]) | |
] | |
answer = None | |
answer_start = None | |
return SquadExample( | |
qas_id=tensor_dict["id"].numpy().decode("utf-8"), | |
question_text=tensor_dict["question"].numpy().decode("utf-8"), | |
context_text=tensor_dict["context"].numpy().decode("utf-8"), | |
answer_text=answer, | |
start_position_character=answer_start, | |
title=tensor_dict["title"].numpy().decode("utf-8"), | |
answers=answers, | |
) | |
def get_examples_from_dataset(self, dataset, evaluate=False): | |
""" | |
Creates a list of [`~data.processors.squad.SquadExample`] using a TFDS dataset. | |
Args: | |
dataset: The tfds dataset loaded from *tensorflow_datasets.load("squad")* | |
evaluate: Boolean specifying if in evaluation mode or in training mode | |
Returns: | |
List of SquadExample | |
Examples: | |
```python | |
>>> import tensorflow_datasets as tfds | |
>>> dataset = tfds.load("squad") | |
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False) | |
>>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True) | |
```""" | |
if evaluate: | |
dataset = dataset["validation"] | |
else: | |
dataset = dataset["train"] | |
examples = [] | |
for tensor_dict in tqdm(dataset): | |
examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) | |
return examples | |
def get_train_examples(self, data_dir, filename=None): | |
""" | |
Returns the training examples from the data directory. | |
Args: | |
data_dir: Directory containing the data files used for training and evaluating. | |
filename: None by default, specify this if the training file has a different name than the original one | |
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. | |
""" | |
if data_dir is None: | |
data_dir = "" | |
if self.train_file is None: | |
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") | |
with open( | |
os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8" | |
) as reader: | |
input_data = json.load(reader)["data"] | |
return self._create_examples(input_data, "train") | |
def get_dev_examples(self, data_dir, filename=None): | |
""" | |
Returns the evaluation example from the data directory. | |
Args: | |
data_dir: Directory containing the data files used for training and evaluating. | |
filename: None by default, specify this if the evaluation file has a different name than the original one | |
which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively. | |
""" | |
if data_dir is None: | |
data_dir = "" | |
if self.dev_file is None: | |
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") | |
with open( | |
os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8" | |
) as reader: | |
input_data = json.load(reader)["data"] | |
return self._create_examples(input_data, "dev") | |
def _create_examples(self, input_data, set_type): | |
is_training = set_type == "train" | |
examples = [] | |
for entry in tqdm(input_data): | |
title = entry["title"] | |
for paragraph in entry["paragraphs"]: | |
context_text = paragraph["context"] | |
for qa in paragraph["qas"]: | |
qas_id = qa["id"] | |
question_text = qa["question"] | |
start_position_character = None | |
answer_text = None | |
answers = [] | |
is_impossible = qa.get("is_impossible", False) | |
if not is_impossible: | |
if is_training: | |
answer = qa["answers"][0] | |
answer_text = answer["text"] | |
start_position_character = answer["answer_start"] | |
else: | |
answers = qa["answers"] | |
example = SquadExample( | |
qas_id=qas_id, | |
question_text=question_text, | |
context_text=context_text, | |
answer_text=answer_text, | |
start_position_character=start_position_character, | |
title=title, | |
is_impossible=is_impossible, | |
answers=answers, | |
) | |
examples.append(example) | |
return examples | |
class SquadV1Processor(SquadProcessor): | |
train_file = "train-v1.1.json" | |
dev_file = "dev-v1.1.json" | |
class SquadV2Processor(SquadProcessor): | |
train_file = "train-v2.0.json" | |
dev_file = "dev-v2.0.json" | |
class SquadExample: | |
""" | |
A single training/test example for the Squad dataset, as loaded from disk. | |
Args: | |
qas_id: The example's unique identifier | |
question_text: The question string | |
context_text: The context string | |
answer_text: The answer string | |
start_position_character: The character position of the start of the answer | |
title: The title of the example | |
answers: None by default, this is used during evaluation. Holds answers as well as their start positions. | |
is_impossible: False by default, set to True if the example has no possible answer. | |
""" | |
def __init__( | |
self, | |
qas_id, | |
question_text, | |
context_text, | |
answer_text, | |
start_position_character, | |
title, | |
answers=[], | |
is_impossible=False, | |
): | |
self.qas_id = qas_id | |
self.question_text = question_text | |
self.context_text = context_text | |
self.answer_text = answer_text | |
self.title = title | |
self.is_impossible = is_impossible | |
self.answers = answers | |
self.start_position, self.end_position = 0, 0 | |
doc_tokens = [] | |
char_to_word_offset = [] | |
prev_is_whitespace = True | |
# Split on whitespace so that different tokens may be attributed to their original position. | |
for c in self.context_text: | |
if _is_whitespace(c): | |
prev_is_whitespace = True | |
else: | |
if prev_is_whitespace: | |
doc_tokens.append(c) | |
else: | |
doc_tokens[-1] += c | |
prev_is_whitespace = False | |
char_to_word_offset.append(len(doc_tokens) - 1) | |
self.doc_tokens = doc_tokens | |
self.char_to_word_offset = char_to_word_offset | |
# Start and end positions only has a value during evaluation. | |
if start_position_character is not None and not is_impossible: | |
self.start_position = char_to_word_offset[start_position_character] | |
self.end_position = char_to_word_offset[ | |
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) | |
] | |
class SquadFeatures: | |
""" | |
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from | |
[`~data.processors.squad.SquadExample`] using the | |
:method:*~transformers.data.processors.squad.squad_convert_examples_to_features* method. | |
Args: | |
input_ids: Indices of input sequence tokens in the vocabulary. | |
attention_mask: Mask to avoid performing attention on padding token indices. | |
token_type_ids: Segment token indices to indicate first and second portions of the inputs. | |
cls_index: the index of the CLS token. | |
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot. | |
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer | |
example_index: the index of the example | |
unique_id: The unique Feature identifier | |
paragraph_len: The length of the context | |
token_is_max_context: | |
List of booleans identifying which tokens have their maximum context in this feature object. If a token | |
does not have their maximum context in this feature object, it means that another feature object has more | |
information related to that token and should be prioritized over this feature for that token. | |
tokens: list of tokens corresponding to the input ids | |
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer. | |
start_position: start of the answer token index | |
end_position: end of the answer token index | |
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods. | |
""" | |
def __init__( | |
self, | |
input_ids, | |
attention_mask, | |
token_type_ids, | |
cls_index, | |
p_mask, | |
example_index, | |
unique_id, | |
paragraph_len, | |
token_is_max_context, | |
tokens, | |
token_to_orig_map, | |
start_position, | |
end_position, | |
is_impossible, | |
qas_id: str = None, | |
encoding: BatchEncoding = None, | |
): | |
self.input_ids = input_ids | |
self.attention_mask = attention_mask | |
self.token_type_ids = token_type_ids | |
self.cls_index = cls_index | |
self.p_mask = p_mask | |
self.example_index = example_index | |
self.unique_id = unique_id | |
self.paragraph_len = paragraph_len | |
self.token_is_max_context = token_is_max_context | |
self.tokens = tokens | |
self.token_to_orig_map = token_to_orig_map | |
self.start_position = start_position | |
self.end_position = end_position | |
self.is_impossible = is_impossible | |
self.qas_id = qas_id | |
self.encoding = encoding | |
class SquadResult: | |
""" | |
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset. | |
Args: | |
unique_id: The unique identifier corresponding to that example. | |
start_logits: The logits corresponding to the start of the answer | |
end_logits: The logits corresponding to the end of the answer | |
""" | |
def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None): | |
self.start_logits = start_logits | |
self.end_logits = end_logits | |
self.unique_id = unique_id | |
if start_top_index: | |
self.start_top_index = start_top_index | |
self.end_top_index = end_top_index | |
self.cls_logits = cls_logits | |