Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch BEiT model.""" | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
ImageClassifierOutput, | |
MaskedLMOutput, | |
SemanticSegmenterOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_beit import BeitConfig | |
logger = logging.get_logger(__name__) | |
# General docstring | |
_CONFIG_FOR_DOC = "BeitConfig" | |
# Base docstring | |
_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k" | |
_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] | |
# Image classification docstring | |
_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224" | |
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" | |
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"microsoft/beit-base-patch16-224", | |
# See all BEiT models at https://huggingface.co/models?filter=beit | |
] | |
class BeitModelOutputWithPooling(BaseModelOutputWithPooling): | |
""" | |
Class for outputs of [`BeitModel`]. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): | |
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if | |
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token | |
will be returned. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, | |
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the | |
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the | |
argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return input | |
keep_prob = 1 - drop_prob | |
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) | |
random_tensor.floor_() # binarize | |
output = input.div(keep_prob) * random_tensor | |
return output | |
class BeitDropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob: Optional[float] = None) -> None: | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
return drop_path(hidden_states, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
# Based on timm implementation, which can be found here: | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
class BeitEmbeddings(nn.Module): | |
""" | |
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. | |
""" | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
if config.use_mask_token: | |
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
else: | |
self.mask_token = None | |
self.patch_embeddings = BeitPatchEmbeddings(config) | |
num_patches = self.patch_embeddings.num_patches | |
if config.use_absolute_position_embeddings: | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) | |
else: | |
self.position_embeddings = None | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: | |
embeddings = self.patch_embeddings(pixel_values) | |
batch_size, seq_len, _ = embeddings.size() | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
if bool_masked_pos is not None: | |
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) | |
# replace the masked visual tokens by mask_tokens | |
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) | |
embeddings = embeddings * (1 - w) + mask_tokens * w | |
embeddings = torch.cat((cls_tokens, embeddings), dim=1) | |
if self.position_embeddings is not None: | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BeitPatchEmbeddings(nn.Module): | |
""" | |
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial | |
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a | |
Transformer. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
image_size, patch_size = config.image_size, config.patch_size | |
num_channels, hidden_size = config.num_channels, config.hidden_size | |
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) | |
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.num_patches = num_patches | |
self.patch_shape = patch_shape | |
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, height, width = pixel_values.shape | |
if num_channels != self.num_channels: | |
raise ValueError( | |
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." | |
) | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return embeddings | |
class BeitSelfAttention(nn.Module): | |
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
if window_size: | |
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) | |
else: | |
self.relative_position_bias = None | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
relative_position_bias: Optional["BeitRelativePositionBias"] = None, | |
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Add relative position bias if present. | |
if self.relative_position_bias is not None: | |
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) | |
# Add shared relative position bias if provided. | |
if relative_position_bias is not None: | |
attention_scores = attention_scores + relative_position_bias | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class BeitSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the | |
layernorm applied before each block. | |
""" | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class BeitAttention(nn.Module): | |
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: | |
super().__init__() | |
self.attention = BeitSelfAttention(config, window_size=window_size) | |
self.output = BeitSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
relative_position_bias: Optional["BeitRelativePositionBias"] = None, | |
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: | |
self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class BeitIntermediate(nn.Module): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BeitOutput(nn.Module): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
class BeitLayer(nn.Module): | |
"""This corresponds to the Block class in the timm implementation.""" | |
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None: | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BeitAttention(config, window_size=window_size) | |
self.intermediate = BeitIntermediate(config) | |
self.output = BeitOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
init_values = config.layer_scale_init_value | |
if init_values > 0: | |
self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) | |
self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) | |
else: | |
self.lambda_1, self.lambda_2 = None, None | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
relative_position_bias: Optional["BeitRelativePositionBias"] = None, | |
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention | |
head_mask, | |
output_attentions=output_attentions, | |
relative_position_bias=relative_position_bias, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# apply lambda_1 if present | |
if self.lambda_1 is not None: | |
attention_output = self.lambda_1 * attention_output | |
# first residual connection | |
hidden_states = self.drop_path(attention_output) + hidden_states | |
# in BEiT, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = self.output(layer_output) | |
if self.lambda_2 is not None: | |
layer_output = self.lambda_2 * layer_output | |
# second residual connection | |
layer_output = self.drop_path(layer_output) + hidden_states | |
outputs = (layer_output,) + outputs | |
return outputs | |
class BeitRelativePositionBias(nn.Module): | |
def __init__(self, config: BeitConfig, window_size: tuple) -> None: | |
super().__init__() | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, config.num_attention_heads) | |
) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = torch.zeros( | |
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype | |
) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index, persistent=False) | |
def forward(self) -> torch.Tensor: | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 | |
) # Wh*Ww,Wh*Ww,nH | |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
class BeitEncoder(nn.Module): | |
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: | |
super().__init__() | |
self.config = config | |
if config.use_shared_relative_position_bias: | |
self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) | |
else: | |
self.relative_position_bias = None | |
# stochastic depth decay rule | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] | |
self.layer = nn.ModuleList( | |
[ | |
BeitLayer( | |
config, | |
window_size=window_size if config.use_relative_position_bias else None, | |
drop_path_rate=dpr[i], | |
) | |
for i in range(config.num_hidden_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = True, | |
) -> Union[tuple, BaseModelOutput]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
layer_head_mask, | |
) | |
else: | |
relative_position_bias = ( | |
self.relative_position_bias() if self.relative_position_bias is not None else None | |
) | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
class BeitPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BeitConfig | |
base_model_prefix = "beit" | |
main_input_name = "pixel_values" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, BeitEncoder): | |
module.gradient_checkpointing = value | |
BEIT_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it | |
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`BeitConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
BEIT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See | |
[`BeitImageProcessor.__call__`] for details. | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BeitModel(BeitPreTrainedModel): | |
def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None: | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BeitEmbeddings(config) | |
self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) | |
self.layernorm = ( | |
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
) | |
self.pooler = BeitPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, BeitModelOutputWithPooling]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(pixel_values, bool_masked_pos) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) | |
return head_outputs + encoder_outputs[1:] | |
return BeitModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class BeitPooler(nn.Module): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.layernorm = ( | |
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None | |
) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
if self.layernorm is not None: | |
# Mean pool the final hidden states of the patch tokens | |
patch_tokens = hidden_states[:, 1:, :] | |
pooled_output = self.layernorm(patch_tokens.mean(1)) | |
else: | |
# Pool by simply taking the final hidden state of the [CLS] token | |
pooled_output = hidden_states[:, 0] | |
return pooled_output | |
class BeitForMaskedImageModeling(BeitPreTrainedModel): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.beit = BeitModel(config, add_pooling_layer=False) | |
# Classifier head | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
bool_masked_pos: Optional[torch.BoolTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, MaskedLMOutput]: | |
r""" | |
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): | |
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling | |
>>> import torch | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") | |
>>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") | |
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 | |
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values | |
>>> # create random boolean mask of shape (batch_size, num_patches) | |
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() | |
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) | |
>>> loss, logits = outputs.loss, outputs.logits | |
>>> list(logits.shape) | |
[1, 196, 8192] | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.beit( | |
pixel_values, | |
bool_masked_pos=bool_masked_pos, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
prediction_scores = self.lm_head(sequence_output[:, 1:]) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[1:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BeitForImageClassification(BeitPreTrainedModel): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.beit = BeitModel(config, add_pooling_layer=True) | |
# Classifier head | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, ImageClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.beit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs.pooler_output if return_dict else outputs[1] | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return ImageClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BeitConvModule(nn.Module): | |
""" | |
A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution | |
layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). | |
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int]], | |
padding: Union[int, Tuple[int, int], str] = 0, | |
bias: bool = False, | |
dilation: Union[int, Tuple[int, int]] = 1, | |
) -> None: | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
bias=bias, | |
dilation=dilation, | |
) | |
self.bn = nn.BatchNorm2d(out_channels) | |
self.activation = nn.ReLU() | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
output = self.conv(input) | |
output = self.bn(output) | |
output = self.activation(output) | |
return output | |
class BeitPyramidPoolingBlock(nn.Module): | |
def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: | |
super().__init__() | |
self.layers = [ | |
nn.AdaptiveAvgPool2d(pool_scale), | |
BeitConvModule(in_channels, channels, kernel_size=1), | |
] | |
for i, layer in enumerate(self.layers): | |
self.add_module(str(i), layer) | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
hidden_state = input | |
for layer in self.layers: | |
hidden_state = layer(hidden_state) | |
return hidden_state | |
class BeitPyramidPoolingModule(nn.Module): | |
""" | |
Pyramid Pooling Module (PPM) used in PSPNet. | |
Args: | |
pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid | |
Module. | |
in_channels (int): Input channels. | |
channels (int): Channels after modules, before conv_seg. | |
align_corners (bool): align_corners argument of F.interpolate. | |
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. | |
""" | |
def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: | |
super().__init__() | |
self.pool_scales = pool_scales | |
self.align_corners = align_corners | |
self.in_channels = in_channels | |
self.channels = channels | |
self.blocks = [] | |
for i, pool_scale in enumerate(pool_scales): | |
block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) | |
self.blocks.append(block) | |
self.add_module(str(i), block) | |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: | |
ppm_outs = [] | |
for ppm in self.blocks: | |
ppm_out = ppm(x) | |
upsampled_ppm_out = nn.functional.interpolate( | |
ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners | |
) | |
ppm_outs.append(upsampled_ppm_out) | |
return ppm_outs | |
class BeitUperHead(nn.Module): | |
""" | |
Unified Perceptual Parsing for Scene Understanding. This head is the implementation of | |
[UPerNet](https://arxiv.org/abs/1807.10221). | |
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. | |
""" | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__() | |
self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) | |
self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] | |
self.channels = config.hidden_size | |
self.align_corners = False | |
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) | |
# PSP Module | |
self.psp_modules = BeitPyramidPoolingModule( | |
self.pool_scales, | |
self.in_channels[-1], | |
self.channels, | |
align_corners=self.align_corners, | |
) | |
self.bottleneck = BeitConvModule( | |
self.in_channels[-1] + len(self.pool_scales) * self.channels, | |
self.channels, | |
kernel_size=3, | |
padding=1, | |
) | |
# FPN Module | |
self.lateral_convs = nn.ModuleList() | |
self.fpn_convs = nn.ModuleList() | |
for in_channels in self.in_channels[:-1]: # skip the top layer | |
l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) | |
fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) | |
self.lateral_convs.append(l_conv) | |
self.fpn_convs.append(fpn_conv) | |
self.fpn_bottleneck = BeitConvModule( | |
len(self.in_channels) * self.channels, | |
self.channels, | |
kernel_size=3, | |
padding=1, | |
) | |
def psp_forward(self, inputs): | |
x = inputs[-1] | |
psp_outs = [x] | |
psp_outs.extend(self.psp_modules(x)) | |
psp_outs = torch.cat(psp_outs, dim=1) | |
output = self.bottleneck(psp_outs) | |
return output | |
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
# build laterals | |
laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] | |
laterals.append(self.psp_forward(encoder_hidden_states)) | |
# build top-down path | |
used_backbone_levels = len(laterals) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
prev_shape = laterals[i - 1].shape[2:] | |
laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( | |
laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners | |
) | |
# build outputs | |
fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] | |
# append psp feature | |
fpn_outs.append(laterals[-1]) | |
for i in range(used_backbone_levels - 1, 0, -1): | |
fpn_outs[i] = nn.functional.interpolate( | |
fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners | |
) | |
fpn_outs = torch.cat(fpn_outs, dim=1) | |
output = self.fpn_bottleneck(fpn_outs) | |
output = self.classifier(output) | |
return output | |
class BeitFCNHead(nn.Module): | |
""" | |
Fully Convolution Networks for Semantic Segmentation. This head is implemented of | |
[FCNNet](https://arxiv.org/abs/1411.4038>). | |
Args: | |
config (BeitConfig): Configuration. | |
in_channels | |
kernel_size (int): The kernel size for convs in the head. Default: 3. | |
dilation (int): The dilation rate for convs in the head. Default: 1. | |
Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. | |
""" | |
def __init__( | |
self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 | |
) -> None: | |
super().__init__() | |
self.in_channels = config.hidden_size | |
self.channels = config.auxiliary_channels | |
self.num_convs = config.auxiliary_num_convs | |
self.concat_input = config.auxiliary_concat_input | |
self.in_index = in_index | |
conv_padding = (kernel_size // 2) * dilation | |
convs = [] | |
convs.append( | |
BeitConvModule( | |
self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation | |
) | |
) | |
for i in range(self.num_convs - 1): | |
convs.append( | |
BeitConvModule( | |
self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation | |
) | |
) | |
if self.num_convs == 0: | |
self.convs = nn.Identity() | |
else: | |
self.convs = nn.Sequential(*convs) | |
if self.concat_input: | |
self.conv_cat = BeitConvModule( | |
self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 | |
) | |
self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) | |
def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
# just take the relevant feature maps | |
hidden_states = encoder_hidden_states[self.in_index] | |
output = self.convs(hidden_states) | |
if self.concat_input: | |
output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) | |
output = self.classifier(output) | |
return output | |
class BeitForSemanticSegmentation(BeitPreTrainedModel): | |
def __init__(self, config: BeitConfig) -> None: | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.beit = BeitModel(config, add_pooling_layer=False) | |
# FPNs | |
self.fpn1 = nn.Sequential( | |
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), | |
nn.BatchNorm2d(config.hidden_size), | |
nn.GELU(), | |
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), | |
) | |
self.fpn2 = nn.Sequential( | |
nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), | |
) | |
self.fpn3 = nn.Identity() | |
self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) | |
# Semantic segmentation head(s) | |
self.decode_head = BeitUperHead(config) | |
self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def compute_loss(self, logits, auxiliary_logits, labels): | |
# upsample logits to the images' original size | |
upsampled_logits = nn.functional.interpolate( | |
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False | |
) | |
if auxiliary_logits is not None: | |
upsampled_auxiliary_logits = nn.functional.interpolate( | |
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False | |
) | |
# compute weighted loss | |
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) | |
main_loss = loss_fct(upsampled_logits, labels) | |
loss = main_loss | |
if auxiliary_logits is not None: | |
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) | |
loss += self.config.auxiliary_loss_weight * auxiliary_loss | |
return loss | |
def forward( | |
self, | |
pixel_values: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[tuple, SemanticSegmenterOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): | |
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") | |
>>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") | |
>>> inputs = image_processor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> # logits are of shape (batch_size, num_labels, height, width) | |
>>> logits = outputs.logits | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
outputs = self.beit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=True, # we need the intermediate hidden states | |
return_dict=return_dict, | |
) | |
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] | |
# only keep certain features, and reshape | |
# note that we do +1 as the encoder_hidden_states also includes the initial embeddings | |
features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] | |
batch_size = pixel_values.shape[0] | |
patch_resolution = self.config.image_size // self.config.patch_size | |
features = [ | |
x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features | |
] | |
# apply FPNs | |
ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] | |
for i in range(len(features)): | |
features[i] = ops[i](features[i]) | |
logits = self.decode_head(features) | |
auxiliary_logits = None | |
if self.auxiliary_head is not None: | |
auxiliary_logits = self.auxiliary_head(features) | |
loss = None | |
if labels is not None: | |
if self.config.num_labels == 1: | |
raise ValueError("The number of labels should be greater than one") | |
else: | |
loss = self.compute_loss(logits, auxiliary_logits, labels) | |
if not return_dict: | |
if output_hidden_states: | |
output = (logits,) + outputs[1:] | |
else: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SemanticSegmenterOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states if output_hidden_states else None, | |
attentions=outputs.attentions, | |
) | |