Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Bros model.""" | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_bros import BrosConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased" | |
_CONFIG_FOR_DOC = "BrosConfig" | |
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"jinho8345/bros-base-uncased", | |
"jinho8345/bros-large-uncased", | |
# See all Bros models at https://huggingface.co/models?filter=bros | |
] | |
BROS_START_DOCSTRING = r""" | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`BrosConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
BROS_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'): | |
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values | |
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the | |
bounding box. | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class BrosSpadeOutput(ModelOutput): | |
""" | |
Base class for outputs of token classification models. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : | |
Classification loss. | |
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): | |
Classification scores for entity initial tokens (before SoftMax). | |
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`): | |
Classification scores for entity sequence tokens (before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
initial_token_logits: torch.FloatTensor = None | |
subsequent_token_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class BrosPositionalEmbedding1D(nn.Module): | |
# Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15 | |
def __init__(self, config): | |
super(BrosPositionalEmbedding1D, self).__init__() | |
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d | |
inv_freq = 1 / ( | |
10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d) | |
) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor: | |
seq_size = pos_seq.size() | |
b1, b2, b3 = seq_size | |
sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2) | |
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) | |
return pos_emb | |
class BrosPositionalEmbedding2D(nn.Module): | |
def __init__(self, config): | |
super(BrosPositionalEmbedding2D, self).__init__() | |
self.dim_bbox = config.dim_bbox | |
self.x_pos_emb = BrosPositionalEmbedding1D(config) | |
self.y_pos_emb = BrosPositionalEmbedding1D(config) | |
def forward(self, bbox: torch.Tensor) -> torch.Tensor: | |
stack = [] | |
for i in range(self.dim_bbox): | |
if i % 2 == 0: | |
stack.append(self.x_pos_emb(bbox[..., i])) | |
else: | |
stack.append(self.y_pos_emb(bbox[..., i])) | |
bbox_pos_emb = torch.cat(stack, dim=-1) | |
return bbox_pos_emb | |
class BrosBboxEmbeddings(nn.Module): | |
def __init__(self, config): | |
super(BrosBboxEmbeddings, self).__init__() | |
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config) | |
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False) | |
def forward(self, bbox: torch.Tensor): | |
bbox_t = bbox.transpose(0, 1) | |
bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :] | |
bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos) | |
bbox_pos_emb = self.bbox_projection(bbox_pos_emb) | |
return bbox_pos_emb | |
class BrosTextEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
self.register_buffer( | |
"token_type_ids", | |
torch.zeros( | |
self.position_ids.size(), | |
dtype=torch.long, | |
device=self.position_ids.device, | |
), | |
persistent=False, | |
) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
past_key_values_length: int = 0, | |
) -> torch.Tensor: | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class BrosSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.is_decoder = config.is_decoder | |
def transpose_for_scores(self, x: torch.Tensor): | |
new_x_shape = x.size()[:-1] + ( | |
self.num_attention_heads, | |
self.attention_head_size, | |
) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
bbox_pos_emb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[torch.Tensor] = False, | |
) -> Tuple[torch.Tensor]: | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_layer = past_key_value[0] | |
value_layer = past_key_value[1] | |
attention_mask = encoder_attention_mask | |
elif is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
seq_length = hidden_states.size()[1] | |
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
# bbox positional encoding | |
batch_size, n_head, seq_length, d_head = query_layer.shape | |
bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head) | |
bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3]) | |
bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb)) | |
attention_scores = attention_scores + bbox_pos_scores | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BrosModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
if self.is_decoder: | |
outputs = outputs + (past_key_value,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros | |
class BrosSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BrosAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = BrosSelfAttention(config) | |
self.output = BrosSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, | |
self.self.num_attention_heads, | |
self.self.attention_head_size, | |
self.pruned_heads, | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
bbox_pos_emb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self( | |
hidden_states=hidden_states, | |
bbox_pos_emb=bbox_pos_emb, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros | |
class BrosIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class BrosOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class BrosLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = BrosAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise Exception(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = BrosAttention(config) | |
self.intermediate = BrosIntermediate(config) | |
self.output = BrosOutput(config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
bbox_pos_emb: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
bbox_pos_emb=bbox_pos_emb, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
if self.is_decoder: | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
else: | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
cross_attn_present_key_value = None | |
if self.is_decoder and encoder_hidden_states is not None: | |
if hasattr(self, "crossattention"): | |
raise Exception( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" | |
) | |
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
cross_attn_past_key_value, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
# add cross-attn cache to positions 3,4 of present_key_value tuple | |
cross_attn_present_key_value = cross_attention_outputs[-1] | |
present_key_value = present_key_value + cross_attn_present_key_value | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, | |
self.chunk_size_feed_forward, | |
self.seq_len_dim, | |
attention_output, | |
) | |
outputs = (layer_output,) + outputs | |
# if decoder, return the attn key/values as the last output | |
if self.is_decoder: | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class BrosEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
bbox_pos_emb: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
next_decoder_cache = () if use_cache else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | |
"`use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
bbox_pos_emb, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states=hidden_states, | |
bbox_pos_emb=bbox_pos_emb, | |
attention_mask=attention_mask, | |
head_mask=layer_head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros | |
class BrosPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BrosRelationExtractor(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.n_relations = config.n_relations | |
self.backbone_hidden_size = config.hidden_size | |
self.head_hidden_size = config.hidden_size | |
self.classifier_dropout_prob = config.classifier_dropout_prob | |
self.drop = nn.Dropout(self.classifier_dropout_prob) | |
self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) | |
self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) | |
self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size)) | |
def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor): | |
query_layer = self.query(self.drop(query_layer)) | |
dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1) | |
key_layer = torch.cat([key_layer, dummy_vec], axis=0) | |
key_layer = self.key(self.drop(key_layer)) | |
query_layer = query_layer.view( | |
query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size | |
) | |
key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size) | |
relation_score = torch.matmul( | |
query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0) | |
) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer)) | |
return relation_score | |
class BrosPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = BrosConfig | |
base_model_prefix = "bros" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class BrosModel(BrosPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = BrosTextEmbeddings(config) | |
self.bbox_embeddings = BrosBboxEmbeddings(config) | |
self.encoder = BrosEncoder(config) | |
self.pooler = BrosPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
bbox: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import BrosProcessor, BrosModel | |
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") | |
>>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased") | |
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") | |
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) | |
>>> encoding["bbox"] = bbox | |
>>> outputs = model(**encoding) | |
>>> last_hidden_states = outputs.last_hidden_state | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if bbox is None: | |
raise ValueError("You have to specify bbox") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
# if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token | |
if bbox.shape[-1] == 4: | |
bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]] | |
scaled_bbox = bbox * self.config.bbox_scale | |
bbox_position_embeddings = self.bbox_embeddings(scaled_bbox) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
bbox_pos_emb=bbox_position_embeddings, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class BrosForTokenClassification(BrosPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.bros = BrosModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
bbox: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
bbox_first_token_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import BrosProcessor, BrosForTokenClassification | |
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") | |
>>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") | |
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") | |
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) | |
>>> encoding["bbox"] = bbox | |
>>> outputs = model(**encoding) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bros( | |
input_ids, | |
bbox=bbox, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
if bbox_first_token_mask is not None: | |
bbox_first_token_mask = bbox_first_token_mask.view(-1) | |
loss = loss_fct( | |
logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask] | |
) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.num_labels = config.num_labels | |
self.n_relations = config.n_relations | |
self.backbone_hidden_size = config.hidden_size | |
self.bros = BrosModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob | |
) | |
# Initial token classification for Entity Extraction (NER) | |
self.initial_token_classifier = nn.Sequential( | |
nn.Dropout(classifier_dropout), | |
nn.Linear(config.hidden_size, config.hidden_size), | |
nn.Dropout(classifier_dropout), | |
nn.Linear(config.hidden_size, config.num_labels), | |
) | |
# Subsequent token classification for Entity Extraction (NER) | |
self.subsequent_token_classifier = BrosRelationExtractor(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
bbox: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
bbox_first_token_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
initial_token_labels: Optional[torch.Tensor] = None, | |
subsequent_token_labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification | |
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") | |
>>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") | |
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") | |
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) | |
>>> encoding["bbox"] = bbox | |
>>> outputs = model(**encoding) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bros( | |
input_ids=input_ids, | |
bbox=bbox, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_states = outputs[0] | |
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() | |
initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous() | |
subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0) | |
# make subsequent token (sequence token classification) mask | |
inv_attention_mask = 1 - attention_mask | |
batch_size, max_seq_length = inv_attention_mask.shape | |
device = inv_attention_mask.device | |
invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool() | |
subsequent_token_logits = subsequent_token_logits.masked_fill( | |
invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min | |
) | |
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() | |
subsequent_token_logits = subsequent_token_logits.masked_fill( | |
self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min | |
) | |
subsequent_token_mask = attention_mask.view(-1).bool() | |
loss = None | |
if initial_token_labels is not None and subsequent_token_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# get initial token loss | |
initial_token_labels = initial_token_labels.view(-1) | |
if bbox_first_token_mask is not None: | |
bbox_first_token_mask = bbox_first_token_mask.view(-1) | |
initial_token_loss = loss_fct( | |
initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask], | |
initial_token_labels[bbox_first_token_mask], | |
) | |
else: | |
initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels) | |
subsequent_token_labels = subsequent_token_labels.view(-1) | |
subsequent_token_loss = loss_fct( | |
subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask], | |
subsequent_token_labels[subsequent_token_mask], | |
) | |
loss = initial_token_loss + subsequent_token_loss | |
if not return_dict: | |
output = (initial_token_logits, subsequent_token_logits) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return BrosSpadeOutput( | |
loss=loss, | |
initial_token_logits=initial_token_logits, | |
subsequent_token_logits=subsequent_token_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class BrosSpadeELForTokenClassification(BrosPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.num_labels = config.num_labels | |
self.n_relations = config.n_relations | |
self.backbone_hidden_size = config.hidden_size | |
self.bros = BrosModel(config) | |
(config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob) | |
self.entity_linker = BrosRelationExtractor(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
bbox: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
bbox_first_token_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> import torch | |
>>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification | |
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") | |
>>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") | |
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") | |
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) | |
>>> encoding["bbox"] = bbox | |
>>> outputs = model(**encoding) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.bros( | |
input_ids=input_ids, | |
bbox=bbox, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_states = outputs[0] | |
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() | |
logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
batch_size, max_seq_length = attention_mask.shape | |
device = attention_mask.device | |
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() | |
mask = bbox_first_token_mask.view(-1) | |
bbox_first_token_mask = torch.cat( | |
[ | |
~bbox_first_token_mask, | |
torch.zeros([batch_size, 1], dtype=torch.bool).to(device), | |
], | |
axis=1, | |
) | |
logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min) | |
logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min) | |
loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask]) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |