Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" CLAP model configuration""" | |
import os | |
from typing import Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = { | |
"laion/clap-htsat-fused": "https://huggingface.co/laion/clap-htsat-fused/resolve/main/config.json", | |
"laion/clap-htsat-unfused": "https://huggingface.co/laion/clap-htsat-unfused/resolve/main/config.json", | |
} | |
class ClapTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the CLAP | |
[calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`ClapTextModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`, | |
`"relu"`, `"silu"` and `"relu_new"` are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`]. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
position_embedding_type (`str`, *optional*, defaults to `"absolute"`): | |
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For | |
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to | |
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). | |
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models | |
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). | |
is_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
projection_hidden_act (`str`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
projection_dim (`int`, *optional*, defaults to 512) | |
Dimension of the projection head of the `ClapTextModelWithProjection`. | |
Examples: | |
```python | |
>>> from transformers import ClapTextConfig, ClapTextModel | |
>>> # Initializing a CLAP text configuration | |
>>> configuration = ClapTextConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = ClapTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clap_text_model" | |
def __init__( | |
self, | |
vocab_size=50265, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=514, | |
type_vocab_size=1, | |
initializer_factor=1.0, | |
layer_norm_eps=1e-12, | |
projection_dim=512, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
position_embedding_type="absolute", | |
use_cache=True, | |
projection_hidden_act="relu", | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_factor = initializer_factor | |
self.layer_norm_eps = layer_norm_eps | |
self.position_embedding_type = position_embedding_type | |
self.use_cache = use_cache | |
self.projection_hidden_act = projection_hidden_act | |
self.projection_dim = projection_dim | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from ClapConfig | |
if config_dict.get("model_type") == "clap": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class ClapAudioConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a | |
CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP | |
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
window_size (`int`, *optional*, defaults to 8): | |
Image size of the spectrogram | |
num_mel_bins (`int`, *optional*, defaults to 64): | |
Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class. | |
spec_size (`int`, *optional*, defaults to 256): | |
Desired input size of the spectrogram that the model supports. It can be different from the output of the | |
`ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size` | |
of the audio models. | |
hidden_act (`str`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
patch_size (`int`, *optional*, defaults to 4): | |
Patch size for the audio spectrogram | |
patch_stride (`list`, *optional*, defaults to `[4, 4]`): | |
Patch stride for the audio spectrogram | |
num_classes (`int`, *optional*, defaults to 527): | |
Number of classes used for the head training | |
hidden_size (`int`, *optional*, defaults to 768): | |
Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's | |
output,which is sent to the projection MLP layer. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Hidden size of the projection layer. | |
depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): | |
Depths used for the Swin Layers of the audio model | |
num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`): | |
Number of attention heads used for the Swin Layers of the audio model | |
enable_fusion (`bool`, *optional*, defaults to `False`): | |
Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the | |
best results. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probabilitiy for all fully connected layers in the encoder. | |
fusion_type (`[type]`, *optional*): | |
Fusion type used for the patch fusion. | |
patch_embed_input_channels (`int`, *optional*, defaults to 1): | |
Number of channels used for the input spectrogram | |
flatten_patch_embeds (`bool`, *optional*, defaults to `True`): | |
Whether or not to flatten the patch embeddings | |
patch_embeds_hidden_size (`int`, *optional*, defaults to 96): | |
Hidden size of the patch embeddings. It is used as the number of output channels. | |
enable_patch_layer_norm (`bool`, *optional*, defaults to `True`): | |
Whether or not to enable layer normalization for the patch embeddings | |
drop_path_rate (`float`, *optional*, defaults to 0.0): | |
Drop path rate for the patch fusion | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not to add a bias to the query, key, value projections. | |
mlp_ratio (`float`, *optional*, defaults to 4.0): | |
Ratio of the mlp hidden dim to embedding dim. | |
aff_block_r (`int`, *optional*, defaults to 4): | |
downsize_ratio used in the AudioFF block | |
num_hidden_layers (`int`, *optional*, defaults to 4): | |
Number of hidden layers in the Transformer encoder. | |
projection_hidden_act (`str`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
layer_norm_eps (`[type]`, *optional*, defaults to 1e-05): | |
The epsilon used by the layer normalization layers. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
Example: | |
```python | |
>>> from transformers import ClapAudioConfig, ClapAudioModel | |
>>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration | |
>>> configuration = ClapAudioConfig() | |
>>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration | |
>>> model = ClapAudioModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "clap_audio_model" | |
def __init__( | |
self, | |
window_size=8, | |
num_mel_bins=64, | |
spec_size=256, | |
hidden_act="gelu", | |
patch_size=4, | |
patch_stride=[4, 4], | |
num_classes=527, | |
hidden_size=768, | |
projection_dim=512, | |
depths=[2, 2, 6, 2], | |
num_attention_heads=[4, 8, 16, 32], | |
enable_fusion=False, | |
hidden_dropout_prob=0.1, | |
fusion_type=None, | |
patch_embed_input_channels=1, | |
flatten_patch_embeds=True, | |
patch_embeds_hidden_size=96, | |
enable_patch_layer_norm=True, | |
drop_path_rate=0.0, | |
attention_probs_dropout_prob=0.0, | |
qkv_bias=True, | |
mlp_ratio=4.0, | |
aff_block_r=4, | |
num_hidden_layers=4, | |
projection_hidden_act="relu", | |
layer_norm_eps=1e-5, | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.window_size = window_size | |
self.num_mel_bins = num_mel_bins | |
self.spec_size = spec_size | |
self.patch_size = patch_size | |
self.patch_stride = patch_stride | |
self.num_classes = num_classes | |
self.hidden_size = hidden_size | |
self.depths = depths | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.window_size = window_size | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.projection_dim = projection_dim | |
self.flatten_patch_embeds = flatten_patch_embeds | |
self.patch_embeds_hidden_size = patch_embeds_hidden_size | |
self.enable_patch_layer_norm = enable_patch_layer_norm | |
self.drop_path_rate = drop_path_rate | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.qkv_bias = qkv_bias | |
self.mlp_ratio = mlp_ratio | |
self.patch_embed_input_channels = patch_embed_input_channels | |
self.aff_block_r = aff_block_r | |
self.layer_norm_eps = layer_norm_eps | |
self.initializer_factor = initializer_factor | |
self.projection_hidden_act = projection_hidden_act | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the audio config dict if we are loading from ClapConfig | |
if config_dict.get("model_type") == "clap": | |
config_dict = config_dict["audio_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class ClapConfig(PretrainedConfig): | |
r""" | |
[`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate | |
a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the CLAP | |
[laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`ClapTextConfig`]. | |
audio_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`ClapAudioConfig`]. | |
logit_scale_init_value (`float`, *optional*, defaults to 14.29): | |
The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation. | |
projection_dim (`int`, *optional*, defaults to 512): | |
Dimentionality of text and audio projection layers. | |
projection_hidden_act (`str`, *optional*, defaults to `"relu"`): | |
Activation function for the projection layers. | |
initializer_factor (`float`, *optional*, defaults to 1.0): | |
Factor to scale the initialization of the model weights. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import ClapConfig, ClapModel | |
>>> # Initializing a ClapConfig with laion-ai/base style configuration | |
>>> configuration = ClapConfig() | |
>>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration | |
>>> model = ClapModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig | |
>>> from transformers import ClapTextConfig, ClapAudioConfig | |
>>> # Initializing a ClapText and ClapAudioConfig configuration | |
>>> config_text = ClapTextConfig() | |
>>> config_audio = ClapAudioConfig() | |
>>> config = ClapConfig.from_text_audio_configs(config_text, config_audio) | |
```""" | |
model_type = "clap" | |
def __init__( | |
self, | |
text_config=None, | |
audio_config=None, | |
logit_scale_init_value=(1 / 0.07), | |
projection_dim=512, | |
projection_hidden_act="relu", | |
initializer_factor=1.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("text_config is None. Initializing the ClapTextConfig with default values.") | |
if audio_config is None: | |
audio_config = {} | |
logger.info("audio_config is None. initializing the ClapAudioConfig with default values.") | |
self.text_config = ClapTextConfig(**text_config) | |
self.audio_config = ClapAudioConfig(**audio_config) | |
self.text_config.projection_dim = projection_dim | |
self.audio_config.projection_dim = projection_dim | |
self.text_config.projection_hidden_act = projection_hidden_act | |
self.audio_config.projection_hidden_act = projection_hidden_act | |
self.projection_dim = projection_dim | |
self.projection_hidden_act = projection_hidden_act | |
self.hidden_size = self.text_config.hidden_size | |
self.logit_scale_init_value = logit_scale_init_value | |
self.initializer_factor = initializer_factor | |
self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths) | |
def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs): | |
r""" | |
Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model | |
configuration. | |
Returns: | |
[`ClapConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs) | |