Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch CLAP model.""" | |
import collections | |
import math | |
from dataclasses import dataclass | |
from typing import Any, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPooling, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer | |
from ...utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" | |
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"laion/clap-htsat-fused", | |
"laion/clap-htsat-unfused", | |
# See all clap models at https://huggingface.co/models?filter=clap | |
] | |
# Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191 | |
def interpolate(hidden_states, ratio): | |
""" | |
Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): | |
Input hidden states | |
ratio (`int`): | |
The ratio of the length of the output to the length of the input. | |
""" | |
(batch_size, time_length, classes_num) = hidden_states.shape | |
upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) | |
upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) | |
return upsampled | |
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249 | |
def window_partition(hidden_states, window_size): | |
""" | |
Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, | |
num_channels)` | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): | |
Input hidden states | |
window_size (`int`): | |
Window size | |
""" | |
batch_size, height, width, num_channels = hidden_states.shape | |
hidden_states = hidden_states.view( | |
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels | |
) | |
windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) | |
return windows | |
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263 | |
def window_reverse(windows, window_size, height, width): | |
""" | |
Args: | |
windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): | |
Input windows | |
window_size (`int`): | |
Window size | |
height (`int`): | |
Height of the resized audio | |
width (`int`): | |
Width of the resized audio | |
""" | |
batch_size = int(windows.shape[0] / (height * width / window_size / window_size)) | |
hidden_states = windows.view(batch_size, height // window_size, width // window_size, window_size, window_size, -1) | |
hidden_states = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(batch_size, height, width, -1) | |
return hidden_states | |
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids | |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
x: torch.Tensor x: | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
return incremental_indices.long() + padding_idx | |
# contrastive loss function, adapted from | |
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function | |
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
labels = torch.arange(len(logits), device=logits.device) | |
return nn.functional.cross_entropy(logits, labels) | |
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap | |
class ClapTextModelOutput(ModelOutput): | |
""" | |
Base class for text model's outputs that also contains a pooling of the last hidden states. | |
Args: | |
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
The text embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
text_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class ClapAudioModelOutput(ModelOutput): | |
""" | |
ClapAudio model output to mimic the output of the original implementation. | |
Args: | |
audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): | |
The Audio embeddings obtained by applying the projection layer to the pooler_output. | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
""" | |
audio_embeds: Optional[torch.FloatTensor] = None | |
last_hidden_state: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio | |
class ClapOutput(ModelOutput): | |
""" | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
Contrastive loss for audio-text similarity. | |
logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): | |
The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text | |
similarity scores. | |
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): | |
The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio | |
similarity scores. | |
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. | |
audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. | |
text_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`ClapTextModel`]. | |
audio_model_output(`BaseModelOutputWithPooling`): | |
The output of the [`ClapAudioModel`]. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits_per_audio: torch.FloatTensor = None | |
logits_per_text: torch.FloatTensor = None | |
text_embeds: torch.FloatTensor = None | |
audio_embeds: torch.FloatTensor = None | |
text_model_output: BaseModelOutputWithPooling = None | |
audio_model_output: BaseModelOutputWithPooling = None | |
def to_tuple(self) -> Tuple[Any]: | |
return tuple( | |
self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() | |
for k in self.keys() | |
) | |
# Adapted from transformers.models.swin.modeling_swin.SwinDropPath | |
class ClapDropPath(nn.Module): | |
""" | |
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly | |
refactored version of the `SwinDropPath` implementation. | |
""" | |
def __init__(self, drop_prob=None): | |
super().__init__() | |
self.drop_prob = drop_prob | |
def forward(self, hidden_states): | |
if self.drop_prob == 0.0 or not self.training: | |
return hidden_states | |
keep_prob = 1 - self.drop_prob | |
# work with diff dim tensors, not just 2D ConvNets | |
shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) | |
random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) | |
random_tensor.floor_() # binarize | |
output = hidden_states.div(keep_prob) * random_tensor | |
return output | |
# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133 | |
class ClapAudioAFFBlock(nn.Module): | |
r""" | |
ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement | |
the 1D version. | |
""" | |
def __init__(self, config: ClapAudioConfig): | |
super().__init__() | |
channels = config.patch_embeds_hidden_size | |
downsize_ratio = config.aff_block_r | |
inter_channels = int(channels // downsize_ratio) | |
self.local_att = nn.Sequential( | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
self.global_att = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(inter_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), | |
nn.BatchNorm2d(channels), | |
) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, hidden_states, residual): | |
attention_input = hidden_states + residual | |
fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) | |
fused_layer_output = self.sigmoid(fused_layer_output) | |
output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) | |
return output | |
class ClapAudioPatchEmbed(nn.Module): | |
""" | |
This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the | |
Transformer block. | |
""" | |
def __init__(self, config: ClapAudioConfig): | |
super().__init__() | |
img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size | |
patch_size = ( | |
(config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size | |
) | |
patch_stride = ( | |
(config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride | |
) | |
self.img_size = img_size | |
self.patch_stride = patch_stride | |
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = config.flatten_patch_embeds | |
self.enable_fusion = config.enable_fusion | |
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) | |
scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 | |
self.proj = nn.Conv2d( | |
config.patch_embed_input_channels * scale_factor, | |
config.patch_embeds_hidden_size, | |
kernel_size=patch_size, | |
stride=patch_stride, | |
padding=padding, | |
) | |
self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() | |
if self.enable_fusion: | |
self.fusion_model = ClapAudioAFFBlock(config) | |
self.mel_conv2d = nn.Conv2d( | |
config.patch_embed_input_channels, | |
config.patch_embeds_hidden_size, | |
kernel_size=(patch_size[0], patch_size[1] * 3), | |
stride=(patch_stride[0], patch_stride[1] * 3), | |
padding=padding, | |
) | |
def forward(self, hidden_states, is_longer_idx=None): | |
if self.enable_fusion: | |
# retrieve the last mel as we have transposed the input | |
global_hidden_states = hidden_states[:, 0:1, :, :] | |
# global processing | |
batch_size, num_channels, height, width = global_hidden_states.shape | |
if height != self.img_size[0] or width != self.img_size[1]: | |
raise ValueError( | |
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
) | |
global_hidden_states = self.proj(global_hidden_states) | |
output_width = global_hidden_states.size(-1) | |
if len(is_longer_idx) > 0: | |
# local processing | |
local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() | |
batch_size, num_channels, height, width = local_hidden_states.shape | |
local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) | |
local_hidden_states = self.mel_conv2d(local_hidden_states) | |
_, features, height, width = local_hidden_states.shape | |
local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) | |
local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) | |
local_width = local_hidden_states.size(-1) | |
local_hidden_states = torch.nn.functional.pad( | |
local_hidden_states, (0, output_width - local_width), "constant", 0 | |
) | |
global_hidden_states[is_longer_idx] = self.fusion_model( | |
global_hidden_states[is_longer_idx], local_hidden_states | |
) | |
hidden_states = global_hidden_states | |
else: | |
_, _, height, width = hidden_states.shape | |
if height != self.img_size[0] or width != self.img_size[1]: | |
raise ValueError( | |
f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
) | |
hidden_states = self.proj(hidden_states) | |
if self.flatten: | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
hidden_states = self.norm(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio | |
class ClapAudioSelfAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size): | |
super().__init__() | |
if dim % num_heads != 0: | |
raise ValueError( | |
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" | |
) | |
self.num_attention_heads = num_heads | |
self.attention_head_size = int(dim / num_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.window_size = ( | |
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) | |
) | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) | |
) | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) | |
coords_flatten = torch.flatten(coords, 1) | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() | |
relative_coords[:, :, 0] += self.window_size[0] - 1 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
batch_size, dim, num_channels = hidden_states.shape | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] | |
relative_position_bias = relative_position_bias.view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 | |
) | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() | |
attention_scores = attention_scores + relative_position_bias.unsqueeze(0) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) | |
mask_shape = attention_mask.shape[0] | |
attention_scores = attention_scores.view( | |
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim | |
) | |
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) | |
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio | |
class ClapAudioSelfOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, dim) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio | |
class ClapAudioAttention(nn.Module): | |
def __init__(self, config, dim, num_heads, window_size): | |
super().__init__() | |
self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) | |
self.output = ClapAudioSelfOutput(config, dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio | |
class ClapAudioIntermediate(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio | |
class ClapAudioOutput(nn.Module): | |
def __init__(self, config, dim): | |
super().__init__() | |
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio | |
class ClapAudioLayer(nn.Module): | |
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.shift_size = shift_size | |
self.window_size = config.window_size | |
self.input_resolution = input_resolution | |
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) | |
self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() | |
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) | |
self.intermediate = ClapAudioIntermediate(config, dim) | |
self.output = ClapAudioOutput(config, dim) | |
def set_shift_and_window_size(self, input_resolution): | |
if min(input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(input_resolution) | |
def get_attn_mask(self, height, width, dtype): | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
img_mask = torch.zeros((1, height, width, 1), dtype=dtype) | |
height_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
width_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
count = 0 | |
for height_slice in height_slices: | |
for width_slice in width_slices: | |
img_mask[:, height_slice, width_slice, :] = count | |
count += 1 | |
mask_windows = window_partition(img_mask, self.window_size) | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
return attn_mask | |
def maybe_pad(self, hidden_states, height, width): | |
pad_right = (self.window_size - width % self.window_size) % self.window_size | |
pad_bottom = (self.window_size - height % self.window_size) % self.window_size | |
pad_values = (0, 0, 0, pad_right, 0, pad_bottom) | |
hidden_states = nn.functional.pad(hidden_states, pad_values) | |
return hidden_states, pad_values | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if not always_partition: | |
self.set_shift_and_window_size(input_dimensions) | |
else: | |
pass | |
height, width = input_dimensions | |
batch_size, _, channels = hidden_states.size() | |
shortcut = hidden_states | |
hidden_states = self.layernorm_before(hidden_states) | |
hidden_states = hidden_states.view(batch_size, height, width, channels) | |
# pad hidden_states to multiples of window size | |
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) | |
_, height_pad, width_pad, _ = hidden_states.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_hidden_states = hidden_states | |
# partition windows | |
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) | |
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) | |
attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) | |
if attn_mask is not None: | |
attn_mask = attn_mask.to(hidden_states_windows.device) | |
attention_outputs = self.attention( | |
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions | |
) | |
attention_output = attention_outputs[0] | |
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) | |
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
attention_windows = shifted_windows | |
was_padded = pad_values[3] > 0 or pad_values[5] > 0 | |
if was_padded: | |
attention_windows = attention_windows[:, :height, :width, :].contiguous() | |
attention_windows = attention_windows.view(batch_size, height * width, channels) | |
hidden_states = shortcut + self.drop_path(attention_windows) | |
layer_output = self.layernorm_after(hidden_states) | |
layer_output = self.intermediate(layer_output) | |
layer_output = hidden_states + self.output(layer_output) | |
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) | |
return layer_outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio | |
class ClapAudioStage(nn.Module): | |
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): | |
super().__init__() | |
self.config = config | |
self.dim = dim | |
self.blocks = nn.ModuleList( | |
[ | |
ClapAudioLayer( | |
config=config, | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
shift_size=0 if (i % 2 == 0) else config.window_size // 2, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) | |
else: | |
self.downsample = None | |
self.pointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
input_dimensions: Tuple[int, int], | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
height, width = input_dimensions | |
for i, layer_module in enumerate(self.blocks): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = hidden_states | |
if self.downsample is not None: | |
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 | |
output_dimensions = (height, width, height_downsampled, width_downsampled) | |
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) | |
else: | |
output_dimensions = (height, width, height, width) | |
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) | |
if output_attentions: | |
stage_outputs += layer_outputs[1:] | |
return stage_outputs | |
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio | |
class ClapAudioPatchMerging(nn.Module): | |
""" | |
Patch Merging Layer. | |
Args: | |
input_resolution (`Tuple[int]`): | |
Resolution of input feature. | |
dim (`int`): | |
Number of input channels. | |
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): | |
Normalization layer class. | |
""" | |
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def maybe_pad(self, input_feature, height, width): | |
should_pad = (height % 2 == 1) or (width % 2 == 1) | |
if should_pad: | |
pad_values = (0, 0, 0, width % 2, 0, height % 2) | |
input_feature = nn.functional.pad(input_feature, pad_values) | |
return input_feature | |
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: | |
height, width = input_dimensions | |
# `dim` is height * width | |
batch_size, dim, num_channels = input_feature.shape | |
input_feature = input_feature.view(batch_size, height, width, num_channels) | |
# pad input to be disible by width and height, if needed | |
input_feature = self.maybe_pad(input_feature, height, width) | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_0 = input_feature[:, 0::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_1 = input_feature[:, 1::2, 0::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_2 = input_feature[:, 0::2, 1::2, :] | |
# [batch_size, height/2, width/2, num_channels] | |
input_feature_3 = input_feature[:, 1::2, 1::2, :] | |
# batch_size height/2 width/2 4*num_channels | |
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) | |
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C | |
input_feature = self.norm(input_feature) | |
input_feature = self.reduction(input_feature) | |
return input_feature | |
class ClapAudioEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.num_layers = len(config.depths) | |
self.config = config | |
self.patch_embed = ClapAudioPatchEmbed(config) | |
self.enable_fusion = config.enable_fusion | |
self.patch_stride = self.patch_embed.patch_stride | |
self.spec_size = config.spec_size | |
self.freq_ratio = config.spec_size // config.num_mel_bins | |
self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) | |
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] | |
grid_size = self.patch_embed.grid_size | |
self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] | |
self.layers = nn.ModuleList( | |
[ | |
ClapAudioStage( | |
config=config, | |
dim=int(config.patch_embeds_hidden_size * 2**i_layer), | |
input_resolution=self.input_resolutions[i_layer], | |
depth=config.depths[i_layer], | |
num_heads=config.num_attention_heads[i_layer], | |
drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], | |
downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, | |
) | |
for i_layer in range(self.num_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) | |
self.norm = nn.LayerNorm(self.num_features) | |
self.depths = config.depths | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
def reshape_mel2img(self, normalized_input_features): | |
""" | |
The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel | |
should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. | |
""" | |
_, _, time_length, freq_length = normalized_input_features.shape | |
spec_width = int(self.spec_size * self.freq_ratio) | |
spec_heigth = self.spec_size // self.freq_ratio | |
if time_length > spec_width or freq_length > spec_heigth: | |
raise ValueError("the wav size should be less than or equal to the swin input size") | |
# to avoid bicubic zero error | |
if time_length < spec_width: | |
normalized_input_features = nn.functional.interpolate( | |
normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True | |
) | |
if freq_length < spec_heigth: | |
normalized_input_features = nn.functional.interpolate( | |
normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True | |
) | |
batch, channels, time, freq = normalized_input_features.shape | |
# batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio | |
normalized_input_features = normalized_input_features.reshape( | |
batch, channels * self.freq_ratio, time // self.freq_ratio, freq | |
) | |
normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() | |
normalized_input_features = normalized_input_features.reshape( | |
batch, channels, freq * self.freq_ratio, time // self.freq_ratio | |
) | |
return normalized_input_features | |
def forward( | |
self, | |
input_features, | |
is_longer: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
output_hidden_states_before_downsampling: Optional[bool] = False, | |
always_partition: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple, ClapAudioModelOutput]: | |
input_features = input_features.transpose(1, 3) | |
normalized_input_features = self.batch_norm(input_features) | |
normalized_input_features = normalized_input_features.transpose(1, 3) | |
is_longer_list_idx = None | |
if self.enable_fusion: | |
is_longer_list = is_longer.to(input_features.device) | |
is_longer_list_idx = torch.where(is_longer_list == 1)[0] | |
hidden_states = self.reshape_mel2img(normalized_input_features) | |
frames_num = hidden_states.shape[2] | |
hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) | |
all_hidden_states = () if output_hidden_states else None | |
all_reshaped_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
input_dimensions = self.input_resolutions[0] | |
if output_hidden_states: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange batch_size (height width) channels -> batch_size channel height width | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
for i, layer_module in enumerate(self.layers): | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
input_dimensions = self.input_resolutions[i] | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), hidden_states, input_dimensions, layer_head_mask | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition | |
) | |
hidden_states = layer_outputs[0] | |
hidden_states_before_downsampling = layer_outputs[1] | |
output_dimensions = layer_outputs[2] | |
input_dimensions = (output_dimensions[-2], output_dimensions[-1]) | |
if output_hidden_states and output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states_before_downsampling.shape | |
# rearrange batch_size (height width) channels -> batch_size channel height width | |
# here we use the original (not downsampled) height and width | |
reshaped_hidden_state = hidden_states_before_downsampling.view( | |
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size | |
) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states_before_downsampling,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
elif output_hidden_states and not output_hidden_states_before_downsampling: | |
batch_size, _, hidden_size = hidden_states.shape | |
# rearrange batch_size (height width) channels -> batch_size channel height width | |
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) | |
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) | |
all_hidden_states += (hidden_states,) | |
all_reshaped_hidden_states += (reshaped_hidden_state,) | |
if output_attentions: | |
all_self_attentions += layer_outputs[3:] | |
last_hidden_state = self.norm(hidden_states) | |
batch_size, _, n_channels = last_hidden_state.shape | |
freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] | |
temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] | |
last_hidden_state = ( | |
last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) | |
) | |
batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape | |
# group 2D CNN | |
c_freq_bin = n_frequencies // self.freq_ratio | |
last_hidden_state = last_hidden_state.reshape( | |
batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp | |
) | |
last_hidden_state = ( | |
last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) | |
) | |
latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) | |
latent_output = torch.flatten(latent_output, 1) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
last_hidden_state, | |
latent_output, | |
all_reshaped_hidden_states, | |
all_self_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=latent_output, | |
hidden_states=all_reshaped_hidden_states, | |
attentions=all_self_attentions, | |
) | |
CLAP_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`ClapConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
CLAP_TEXT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
CLAP_AUDIO_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also | |
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. | |
is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): | |
Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance | |
the features. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
CLAP_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also | |
retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. | |
return_loss (`bool`, *optional*): | |
Whether or not to return the contrastive loss. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ClapProjectionLayer(nn.Module): | |
def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): | |
super().__init__() | |
self.config = config | |
hidden_size = config.hidden_size | |
projection_dim = config.projection_dim | |
self.linear1 = nn.Linear(hidden_size, projection_dim) | |
self.activation = ACT2FN[config.projection_hidden_act] | |
self.linear2 = nn.Linear(projection_dim, projection_dim) | |
def forward(self, hidden_states): | |
hidden_states = self.linear1(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = self.linear2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True | |
class ClapTextEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True | |
) | |
self.register_buffer( | |
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True | |
) | |
# End copy | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = nn.Embedding( | |
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
) | |
def forward( | |
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText | |
class ClapTextSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = position_embedding_type or getattr( | |
config, "position_embedding_type", "absolute" | |
) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
self.max_position_embeddings = config.max_position_embeddings | |
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) | |
self.is_decoder = config.is_decoder | |
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
mixed_query_layer = self.query(hidden_states) | |
# If this is instantiated as a cross-attention module, the keys | |
# and values come from an encoder; the attention mask needs to be | |
# such that the encoder's padding tokens are not attended to. | |
is_cross_attention = encoder_hidden_states is not None | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_layer = past_key_value[0] | |
value_layer = past_key_value[1] | |
attention_mask = encoder_attention_mask | |
elif is_cross_attention: | |
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) | |
attention_mask = encoder_attention_mask | |
elif past_key_value is not None: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) | |
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) | |
else: | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
use_cache = past_key_value is not None | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_layer, value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": | |
query_length, key_length = query_layer.shape[2], key_layer.shape[2] | |
if use_cache: | |
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( | |
-1, 1 | |
) | |
else: | |
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) | |
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) | |
distance = position_ids_l - position_ids_r | |
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) | |
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility | |
if self.position_embedding_type == "relative_key": | |
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores | |
elif self.position_embedding_type == "relative_key_query": | |
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) | |
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) | |
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
if self.is_decoder: | |
outputs = outputs + (past_key_value,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
class ClapTextSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText | |
class ClapTextAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) | |
self.output = ClapTextSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
self_outputs = self.self( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
class ClapTextIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput | |
class ClapTextOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText | |
class ClapTextLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = ClapTextAttention(config) | |
self.is_decoder = config.is_decoder | |
self.add_cross_attention = config.add_cross_attention | |
if self.add_cross_attention: | |
if not self.is_decoder: | |
raise ValueError(f"{self} should be used as a decoder model if cross attention is added") | |
self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") | |
self.intermediate = ClapTextIntermediate(config) | |
self.output = ClapTextOutput(config) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor]: | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
self_attention_outputs = self.attention( | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
past_key_value=self_attn_past_key_value, | |
) | |
attention_output = self_attention_outputs[0] | |
# if decoder, the last output is tuple of self-attn cache | |
if self.is_decoder: | |
outputs = self_attention_outputs[1:-1] | |
present_key_value = self_attention_outputs[-1] | |
else: | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
cross_attn_present_key_value = None | |
if self.is_decoder and encoder_hidden_states is not None: | |
if not hasattr(self, "crossattention"): | |
raise ValueError( | |
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" | |
" by setting `config.add_cross_attention=True`" | |
) | |
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
cross_attention_outputs = self.crossattention( | |
attention_output, | |
attention_mask, | |
head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
cross_attn_past_key_value, | |
output_attentions, | |
) | |
attention_output = cross_attention_outputs[0] | |
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights | |
# add cross-attn cache to positions 3,4 of present_key_value tuple | |
cross_attn_present_key_value = cross_attention_outputs[-1] | |
present_key_value = present_key_value + cross_attn_present_key_value | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
# if decoder, return the attn key/values as the last output | |
if self.is_decoder: | |
outputs = outputs + (present_key_value,) | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText | |
class ClapTextEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = False, | |
output_hidden_states: Optional[bool] = False, | |
return_dict: Optional[bool] = True, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
next_decoder_cache = () if use_cache else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
past_key_value = past_key_values[i] if past_key_values is not None else None | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, past_key_value, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
layer_head_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
past_key_value, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[-1],) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if self.config.add_cross_attention: | |
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPooler | |
class ClapTextPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class ClapPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ClapConfig | |
base_model_prefix = "clap" | |
supports_gradient_checkpointing = False | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
factor = self.config.initializer_factor | |
if isinstance(module, ClapTextEmbeddings): | |
module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
elif isinstance(module, ClapModel): | |
nn.init.normal_(module.logit_scale_a, std=factor * 0.02) | |
nn.init.normal_(module.logit_scale_t, std=factor * 0.02) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, (nn.Conv2d, nn.Linear)): | |
in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor | |
nn.init.normal_(module.weight, std=in_proj_std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, ClapTextEncoder): | |
module.gradient_checkpointing = value | |
class ClapAudioModel(ClapPreTrainedModel): | |
config_class = ClapAudioConfig | |
main_input_name = "input_features" | |
def __init__(self, config: ClapAudioConfig): | |
super().__init__(config) | |
self.audio_encoder = ClapAudioEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.audio_encoder.patch_embed.proj | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
is_longer: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPooling]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from datasets import load_dataset | |
>>> from transformers import AutoProcessor, ClapAudioModel | |
>>> dataset = load_dataset("ashraq/esc50") | |
>>> audio_sample = dataset["train"]["audio"][0]["array"] | |
>>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") | |
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") | |
>>> inputs = processor(audios=audio_sample, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_state = outputs.last_hidden_state | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return self.audio_encoder( | |
input_features=input_features, | |
is_longer=is_longer, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class ClapTextModel(ClapPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in *Attention is | |
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz | |
Kaiser and Illia Polosukhin. | |
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set | |
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and | |
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. | |
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 | |
""" | |
config_class = ClapTextConfig | |
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = ClapTextEmbeddings(config) | |
self.encoder = ClapTextEncoder(config) | |
self.pooler = ClapTextPooler(config) if add_pooling_layer else None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
# Copied from transformers.models.bert.modeling_bert.BertModel.forward | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: | |
r""" | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if | |
the model is configured as a decoder. | |
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in | |
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.config.is_decoder: | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
else: | |
use_cache = False | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) | |
# If a 2D or 3D attention mask is provided for the cross-attention | |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
if self.config.is_decoder and encoder_hidden_states is not None: | |
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
if encoder_attention_mask is None: | |
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
else: | |
encoder_extended_attention_mask = None | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values_length=past_key_values_length, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class ClapModel(ClapPreTrainedModel): | |
config_class = ClapConfig | |
def __init__(self, config: ClapConfig): | |
super().__init__(config) | |
if not isinstance(config.text_config, ClapTextConfig): | |
raise ValueError( | |
"config.text_config is expected to be of type ClapTextConfig but is of type" | |
f" {type(config.text_config)}." | |
) | |
if not isinstance(config.audio_config, ClapAudioConfig): | |
raise ValueError( | |
"config.audio_config is expected to be of type ClapAudioConfig but is of type" | |
f" {type(config.audio_config)}." | |
) | |
text_config = config.text_config | |
audio_config = config.audio_config | |
self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) | |
self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) | |
self.projection_dim = config.projection_dim | |
self.text_model = ClapTextModel(text_config) | |
self.text_projection = ClapProjectionLayer(text_config) | |
self.audio_model = ClapAudioModel(audio_config) | |
self.audio_projection = ClapProjectionLayer(audio_config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_text_features( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
applying the projection layer to the pooled output of [`ClapTextModel`]. | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, ClapModel | |
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") | |
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") | |
>>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") | |
>>> text_features = model.get_text_features(**inputs) | |
```""" | |
# Use CLAP model's config for some fields (if specified) instead of those of audio & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output | |
text_features = self.text_projection(pooled_output) | |
text_features = F.normalize(text_features, dim=-1) | |
return text_features | |
def get_audio_features( | |
self, | |
input_features: Optional[torch.Tensor] = None, | |
is_longer: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Returns: | |
audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by | |
applying the projection layer to the pooled output of [`ClapAudioModel`]. | |
Examples: | |
```python | |
>>> from transformers import AutoFeatureExtractor, ClapModel | |
>>> import torch | |
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") | |
>>> random_audio = torch.rand((16_000)) | |
>>> inputs = feature_extractor(random_audio, return_tensors="pt") | |
>>> audio_features = model.get_audio_features(**inputs) | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
audio_outputs = self.audio_model( | |
input_features=input_features, | |
is_longer=is_longer, | |
return_dict=return_dict, | |
) | |
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output | |
audio_features = self.audio_projection(pooled_output) | |
audio_features = F.normalize(audio_features, dim=-1) | |
return audio_features | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
input_features: Optional[torch.FloatTensor] = None, | |
is_longer: Optional[torch.BoolTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
return_loss: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ClapOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from datasets import load_dataset | |
>>> from transformers import AutoProcessor, ClapModel | |
>>> dataset = load_dataset("ashraq/esc50") | |
>>> audio_sample = dataset["train"]["audio"][0]["array"] | |
>>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") | |
>>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") | |
>>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] | |
>>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) | |
>>> outputs = model(**inputs) | |
>>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score | |
>>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities | |
```""" | |
# Use CLAP model's config for some fields (if specified) instead of those of audio & text components. | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
audio_outputs = self.audio_model( | |
input_features=input_features, | |
is_longer=is_longer, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output | |
audio_embeds = self.audio_projection(audio_embeds) | |
text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output | |
text_embeds = self.text_projection(text_embeds) | |
# normalized features | |
audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale_text = self.logit_scale_t.exp() | |
logit_scale_audio = self.logit_scale_a.exp() | |
logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text | |
logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio | |
loss = None | |
if return_loss: | |
caption_loss = contrastive_loss(logits_per_text) | |
audio_loss = contrastive_loss(logits_per_audio.t()) | |
loss = (caption_loss + audio_loss) / 2.0 | |
if not return_dict: | |
output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) | |
return ((loss,) + output) if loss is not None else output | |
return ClapOutput( | |
loss=loss, | |
logits_per_audio=logits_per_audio, | |
logits_per_text=logits_per_text, | |
text_embeds=text_embeds, | |
audio_embeds=audio_embeds, | |
text_model_output=text_outputs, | |
audio_model_output=audio_outputs, | |
) | |
class ClapTextModelWithProjection(ClapPreTrainedModel): | |
config_class = ClapTextConfig | |
def __init__(self, config: ClapTextConfig): | |
super().__init__(config) | |
self.text_model = ClapTextModel(config) | |
self.text_projection = ClapProjectionLayer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.text_model.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.text_model.embeddings.word_embeddings = value | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ClapTextModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoTokenizer, ClapTextModelWithProjection | |
>>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") | |
>>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") | |
>>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> text_embeds = outputs.text_embeds | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
text_outputs = self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output | |
text_embeds = self.text_projection(pooled_output) | |
if not return_dict: | |
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] | |
return tuple(output for output in outputs if output is not None) | |
return ClapTextModelOutput( | |
text_embeds=text_embeds, | |
last_hidden_state=text_outputs.last_hidden_state, | |
hidden_states=text_outputs.hidden_states, | |
attentions=text_outputs.attentions, | |
) | |
class ClapAudioModelWithProjection(ClapPreTrainedModel): | |
config_class = ClapAudioConfig | |
main_input_name = "input_features" | |
def __init__(self, config: ClapAudioConfig): | |
super().__init__(config) | |
self.audio_model = ClapAudioModel(config) | |
self.audio_projection = ClapProjectionLayer(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.audio_model.audio_encoder.patch_embed.proj | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
is_longer: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, ClapAudioModelOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from datasets import load_dataset | |
>>> from transformers import ClapAudioModelWithProjection, ClapProcessor | |
>>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") | |
>>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") | |
>>> dataset = load_dataset("ashraq/esc50") | |
>>> audio_sample = dataset["train"]["audio"][0]["array"] | |
>>> inputs = processor(audios=audio_sample, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> audio_embeds = outputs.audio_embeds | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
audio_outputs = self.audio_model( | |
input_features=input_features, | |
is_longer=is_longer, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output | |
audio_embeds = self.audio_projection(pooled_output) | |
if not return_dict: | |
outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] | |
return tuple(output for output in outputs if output is not None) | |
return ClapAudioModelOutput( | |
audio_embeds=audio_embeds, | |
last_hidden_state=audio_outputs.last_hidden_state, | |
attentions=audio_outputs.attentions, | |
hidden_states=audio_outputs.hidden_states, | |
) | |