Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2018 Salesforce and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Salesforce CTRL configuration""" | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"Salesforce/ctrl": "https://huggingface.co/Salesforce/ctrl/resolve/main/config.json" | |
} | |
class CTRLConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`CTRLModel`] or a [`TFCTRLModel`]. It is used to | |
instantiate a CTRL model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the | |
[Salesforce/ctrl](https://huggingface.co/Salesforce/ctrl) architecture from SalesForce. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 246534): | |
Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`CTRLModel`] or [`TFCTRLModel`]. | |
n_positions (`int`, *optional*, defaults to 256): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_embd (`int`, *optional*, defaults to 1280): | |
Dimensionality of the embeddings and hidden states. | |
dff (`int`, *optional*, defaults to 8192): | |
Dimensionality of the inner dimension of the feed forward networks (FFN). | |
n_layer (`int`, *optional*, defaults to 48): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`int`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-06): | |
The epsilon to use in the layer normalization layers | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
Examples: | |
```python | |
>>> from transformers import CTRLConfig, CTRLModel | |
>>> # Initializing a CTRL configuration | |
>>> configuration = CTRLConfig() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = CTRLModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "ctrl" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"max_position_embeddings": "n_positions", | |
"hidden_size": "n_embd", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=246534, | |
n_positions=256, | |
n_embd=1280, | |
dff=8192, | |
n_layer=48, | |
n_head=16, | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
layer_norm_epsilon=1e-6, | |
initializer_range=0.02, | |
use_cache=True, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.dff = dff | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.use_cache = use_cache | |
super().__init__(**kwargs) | |