Spaces:
Starting
on
T4
Starting
on
T4
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Benchmarking the library on inference and training in PyTorch. | |
""" | |
import timeit | |
from typing import Callable, Optional | |
from ..configuration_utils import PretrainedConfig | |
from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING | |
from ..utils import is_py3nvml_available, is_torch_available, logging | |
from .benchmark_utils import ( | |
Benchmark, | |
Memory, | |
MemorySummary, | |
measure_peak_memory_cpu, | |
start_memory_tracing, | |
stop_memory_tracing, | |
) | |
if is_torch_available(): | |
import torch | |
from .benchmark_args import PyTorchBenchmarkArguments | |
if is_py3nvml_available(): | |
import py3nvml.py3nvml as nvml | |
logger = logging.get_logger(__name__) | |
class PyTorchBenchmark(Benchmark): | |
args: PyTorchBenchmarkArguments | |
configs: PretrainedConfig | |
framework: str = "PyTorch" | |
def framework_version(self): | |
return torch.__version__ | |
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: | |
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length) | |
return self._measure_speed(_inference) | |
def _inference_memory( | |
self, model_name: str, batch_size: int, sequence_length: int | |
) -> [Memory, Optional[MemorySummary]]: | |
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length) | |
return self._measure_memory(_inference) | |
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: | |
_train = self._prepare_train_func(model_name, batch_size, sequence_length) | |
return self._measure_speed(_train) | |
def _train_memory( | |
self, model_name: str, batch_size: int, sequence_length: int | |
) -> [Memory, Optional[MemorySummary]]: | |
_train = self._prepare_train_func(model_name, batch_size, sequence_length) | |
return self._measure_memory(_train) | |
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: | |
config = self.config_dict[model_name] | |
if self.args.torchscript: | |
config.torchscript = True | |
has_model_class_in_config = ( | |
hasattr(config, "architectures") | |
and isinstance(config.architectures, list) | |
and len(config.architectures) > 0 | |
) | |
if not self.args.only_pretrain_model and has_model_class_in_config: | |
try: | |
model_class = config.architectures[0] | |
transformers_module = __import__("transformers", fromlist=[model_class]) | |
model_cls = getattr(transformers_module, model_class) | |
model = model_cls(config) | |
except ImportError: | |
raise ImportError( | |
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" | |
" set `--only_pretrain_model` or `args.only_pretrain_model=True`." | |
) | |
else: | |
model = MODEL_MAPPING[config.__class__](config) | |
model.eval() | |
model.to(self.args.device) | |
# encoder-decoder has vocab size saved differently | |
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size | |
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) | |
if self.args.fp16: | |
logger.info("Running training in Mixed Precision...") | |
if not self.args.is_gpu: | |
raise ValueError("Mixed precision is possible only for GPU.") | |
# amp seems to have memory leaks so that memory usage | |
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 | |
model.half() | |
if self.args.torchscript: | |
with torch.no_grad(): | |
inference_model = torch.jit.trace(model, input_ids) | |
else: | |
inference_model = model | |
def encoder_decoder_forward(): | |
with torch.no_grad(): | |
outputs = inference_model(input_ids, decoder_input_ids=input_ids) | |
return outputs | |
def encoder_forward(): | |
with torch.no_grad(): | |
outputs = inference_model(input_ids) | |
return outputs | |
_forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward | |
return _forward | |
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: | |
config = self.config_dict[model_name] | |
has_model_class_in_config = ( | |
hasattr(config, "architectures") | |
and isinstance(config.architectures, list) | |
and len(config.architectures) > 0 | |
) | |
if not self.args.only_pretrain_model and has_model_class_in_config: | |
try: | |
model_class = config.architectures[0] | |
transformers_module = __import__("transformers", fromlist=[model_class]) | |
model_cls = getattr(transformers_module, model_class) | |
model = model_cls(config) | |
except ImportError: | |
raise ImportError( | |
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" | |
" set `--only_pretrain_model` or `args.only_pretrain_model=True`." | |
) | |
else: | |
model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config) | |
if self.args.torchscript: | |
raise NotImplementedError("Training for torchscript is currently not implemented") | |
else: | |
train_model = model | |
model.train() | |
model.to(self.args.device) | |
# encoder-decoder has vocab size saved differently | |
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size | |
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) | |
if self.args.fp16: | |
logger.info("Running training in Mixed Precision...") | |
if not self.args.is_gpu: | |
raise ValueError("Mixed precision is possible only for GPU.") | |
# amp seems to have memory leaks so that memory usage | |
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 | |
model.half() | |
def compute_loss_and_backprob_encoder(): | |
loss = train_model(input_ids, labels=input_ids)[0] | |
loss.backward() | |
return loss | |
def compute_loss_and_backprob_encoder_decoder(): | |
loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0] | |
loss.backward() | |
return loss | |
_train = ( | |
compute_loss_and_backprob_encoder_decoder | |
if config.is_encoder_decoder | |
else compute_loss_and_backprob_encoder | |
) | |
return _train | |
def _measure_speed(self, func) -> float: | |
try: | |
if self.args.is_tpu or self.args.torchscript: | |
# run additional 10 times to stabilize compilation for tpu and torchscript | |
logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation") | |
timeit.repeat( | |
func, | |
repeat=1, | |
number=5, | |
) | |
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average | |
runtimes = timeit.repeat( | |
func, | |
repeat=self.args.repeat, | |
number=10, | |
) | |
if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics: | |
import torch_xla.debug.metrics as met | |
self.print_fn(met.metrics_report()) | |
return min(runtimes) / 10.0 | |
except RuntimeError as e: | |
self.print_fn(f"Doesn't fit on GPU. {e}") | |
return "N/A" | |
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]: | |
try: | |
if self.args.trace_memory_line_by_line: | |
trace = start_memory_tracing("transformers") | |
if self.args.is_tpu: | |
# tpu | |
raise NotImplementedError( | |
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with" | |
" `--no-memory` or `args.memory=False`" | |
) | |
elif self.args.is_gpu: | |
if not is_py3nvml_available(): | |
logger.warning( | |
"py3nvml not installed, we won't log GPU memory usage. " | |
"Install py3nvml (pip install py3nvml) to log information about GPU." | |
) | |
memory = "N/A" | |
else: | |
logger.info( | |
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running" | |
" on the same GPU." | |
) | |
# init nvml | |
nvml.nvmlInit() | |
func() | |
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) | |
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) | |
max_bytes_in_use = meminfo.used | |
memory = Memory(max_bytes_in_use) | |
# shutdown nvml | |
nvml.nvmlShutdown() | |
else: | |
# cpu | |
memory_bytes = measure_peak_memory_cpu(func) | |
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes | |
if self.args.trace_memory_line_by_line: | |
summary = stop_memory_tracing(trace) | |
else: | |
summary = None | |
return memory, summary | |
except RuntimeError as e: | |
self.print_fn(f"Doesn't fit on GPU. {e}") | |
return "N/A", None | |