Spaces:
Starting
on
T4
Starting
on
T4
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Misc functions, including distributed helpers. | |
Mostly copy-paste from torchvision references. | |
""" | |
import colorsys | |
import datetime | |
import functools | |
import io | |
import json | |
import os | |
import pickle | |
import subprocess | |
import time | |
from collections import OrderedDict, defaultdict, deque | |
from typing import List, Optional | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
# needed due to empty tensor bug in pytorch and torchvision 0.5 | |
import torchvision | |
from torch import Tensor | |
__torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7 | |
if __torchvision_need_compat_flag: | |
from torchvision.ops import _new_empty_tensor | |
from torchvision.ops.misc import _output_size | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
if d.shape[0] == 0: | |
return 0 | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
if os.environ.get("SHILONG_AMP", None) == "1": | |
eps = 1e-4 | |
else: | |
eps = 1e-6 | |
return self.total / (self.count + eps) | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value, | |
) | |
def _get_global_gloo_group(): | |
""" | |
Return a process group based on gloo backend, containing all the ranks | |
The result is cached. | |
""" | |
if dist.get_backend() == "nccl": | |
return dist.new_group(backend="gloo") | |
return dist.group.WORLD | |
def all_gather_cpu(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
cpu_group = _get_global_gloo_group() | |
buffer = io.BytesIO() | |
torch.save(data, buffer) | |
data_view = buffer.getbuffer() | |
device = "cuda" if cpu_group is None else "cpu" | |
tensor = torch.ByteTensor(data_view).to(device) | |
# obtain Tensor size of each rank | |
local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long) | |
size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)] | |
if cpu_group is None: | |
dist.all_gather(size_list, local_size) | |
else: | |
print("gathering on cpu") | |
dist.all_gather(size_list, local_size, group=cpu_group) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
assert isinstance(local_size.item(), int) | |
local_size = int(local_size.item()) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device)) | |
if local_size != max_size: | |
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device) | |
tensor = torch.cat((tensor, padding), dim=0) | |
if cpu_group is None: | |
dist.all_gather(tensor_list, tensor) | |
else: | |
dist.all_gather(tensor_list, tensor, group=cpu_group) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
tensor = torch.split(tensor, [size, max_size - size], dim=0)[0] | |
buffer = io.BytesIO(tensor.cpu().numpy()) | |
obj = torch.load(buffer) | |
data_list.append(obj) | |
return data_list | |
def all_gather(data): | |
""" | |
Run all_gather on arbitrary picklable data (not necessarily tensors) | |
Args: | |
data: any picklable object | |
Returns: | |
list[data]: list of data gathered from each rank | |
""" | |
if os.getenv("CPU_REDUCE") == "1": | |
return all_gather_cpu(data) | |
world_size = get_world_size() | |
if world_size == 1: | |
return [data] | |
# serialized to a Tensor | |
buffer = pickle.dumps(data) | |
storage = torch.ByteStorage.from_buffer(buffer) | |
tensor = torch.ByteTensor(storage).to("cuda") | |
# obtain Tensor size of each rank | |
local_size = torch.tensor([tensor.numel()], device="cuda") | |
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] | |
dist.all_gather(size_list, local_size) | |
size_list = [int(size.item()) for size in size_list] | |
max_size = max(size_list) | |
# receiving Tensor from all ranks | |
# we pad the tensor because torch all_gather does not support | |
# gathering tensors of different shapes | |
tensor_list = [] | |
for _ in size_list: | |
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) | |
if local_size != max_size: | |
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") | |
tensor = torch.cat((tensor, padding), dim=0) | |
dist.all_gather(tensor_list, tensor) | |
data_list = [] | |
for size, tensor in zip(size_list, tensor_list): | |
buffer = tensor.cpu().numpy().tobytes()[:size] | |
data_list.append(pickle.loads(buffer)) | |
return data_list | |
def reduce_dict(input_dict, average=True): | |
""" | |
Args: | |
input_dict (dict): all the values will be reduced | |
average (bool): whether to do average or sum | |
Reduce the values in the dictionary from all processes so that all processes | |
have the averaged results. Returns a dict with the same fields as | |
input_dict, after reduction. | |
""" | |
world_size = get_world_size() | |
if world_size < 2: | |
return input_dict | |
with torch.no_grad(): | |
names = [] | |
values = [] | |
# sort the keys so that they are consistent across processes | |
for k in sorted(input_dict.keys()): | |
names.append(k) | |
values.append(input_dict[k]) | |
values = torch.stack(values, dim=0) | |
dist.all_reduce(values) | |
if average: | |
values /= world_size | |
reduced_dict = {k: v for k, v in zip(names, values)} | |
return reduced_dict | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
# print(name, str(meter)) | |
# import ipdb;ipdb.set_trace() | |
if meter.count > 0: | |
loss_str.append("{}: {}".format(name, str(meter))) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None, logger=None): | |
if logger is None: | |
print_func = print | |
else: | |
print_func = logger.info | |
i = 0 | |
if not header: | |
header = "" | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt="{avg:.4f}") | |
data_time = SmoothedValue(fmt="{avg:.4f}") | |
space_fmt = ":" + str(len(str(len(iterable)))) + "d" | |
if torch.cuda.is_available(): | |
log_msg = self.delimiter.join( | |
[ | |
header, | |
"[{0" + space_fmt + "}/{1}]", | |
"eta: {eta}", | |
"{meters}", | |
"time: {time}", | |
"data: {data}", | |
"max mem: {memory:.0f}", | |
] | |
) | |
else: | |
log_msg = self.delimiter.join( | |
[ | |
header, | |
"[{0" + space_fmt + "}/{1}]", | |
"eta: {eta}", | |
"{meters}", | |
"time: {time}", | |
"data: {data}", | |
] | |
) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
# import ipdb; ipdb.set_trace() | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print_func( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB, | |
) | |
) | |
else: | |
print_func( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
) | |
) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print_func( | |
"{} Total time: {} ({:.4f} s / it)".format( | |
header, total_time_str, total_time / len(iterable) | |
) | |
) | |
def get_sha(): | |
cwd = os.path.dirname(os.path.abspath(__file__)) | |
def _run(command): | |
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() | |
sha = "N/A" | |
diff = "clean" | |
branch = "N/A" | |
try: | |
sha = _run(["git", "rev-parse", "HEAD"]) | |
subprocess.check_output(["git", "diff"], cwd=cwd) | |
diff = _run(["git", "diff-index", "HEAD"]) | |
diff = "has uncommited changes" if diff else "clean" | |
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) | |
except Exception: | |
pass | |
message = f"sha: {sha}, status: {diff}, branch: {branch}" | |
return message | |
def collate_fn(batch): | |
# import ipdb; ipdb.set_trace() | |
batch = list(zip(*batch)) | |
batch[0] = nested_tensor_from_tensor_list(batch[0]) | |
return tuple(batch) | |
def _max_by_axis(the_list): | |
# type: (List[List[int]]) -> List[int] | |
maxes = the_list[0] | |
for sublist in the_list[1:]: | |
for index, item in enumerate(sublist): | |
maxes[index] = max(maxes[index], item) | |
return maxes | |
class NestedTensor(object): | |
def __init__(self, tensors, mask: Optional[Tensor]): | |
self.tensors = tensors | |
self.mask = mask | |
if mask == "auto": | |
self.mask = torch.zeros_like(tensors).to(tensors.device) | |
if self.mask.dim() == 3: | |
self.mask = self.mask.sum(0).to(bool) | |
elif self.mask.dim() == 4: | |
self.mask = self.mask.sum(1).to(bool) | |
else: | |
raise ValueError( | |
"tensors dim must be 3 or 4 but {}({})".format( | |
self.tensors.dim(), self.tensors.shape | |
) | |
) | |
def imgsize(self): | |
res = [] | |
for i in range(self.tensors.shape[0]): | |
mask = self.mask[i] | |
maxH = (~mask).sum(0).max() | |
maxW = (~mask).sum(1).max() | |
res.append(torch.Tensor([maxH, maxW])) | |
return res | |
def to(self, device): | |
# type: (Device) -> NestedTensor # noqa | |
cast_tensor = self.tensors.to(device) | |
mask = self.mask | |
if mask is not None: | |
assert mask is not None | |
cast_mask = mask.to(device) | |
else: | |
cast_mask = None | |
return NestedTensor(cast_tensor, cast_mask) | |
def to_img_list_single(self, tensor, mask): | |
assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim()) | |
maxH = (~mask).sum(0).max() | |
maxW = (~mask).sum(1).max() | |
img = tensor[:, :maxH, :maxW] | |
return img | |
def to_img_list(self): | |
"""remove the padding and convert to img list | |
Returns: | |
[type]: [description] | |
""" | |
if self.tensors.dim() == 3: | |
return self.to_img_list_single(self.tensors, self.mask) | |
else: | |
res = [] | |
for i in range(self.tensors.shape[0]): | |
tensor_i = self.tensors[i] | |
mask_i = self.mask[i] | |
res.append(self.to_img_list_single(tensor_i, mask_i)) | |
return res | |
def device(self): | |
return self.tensors.device | |
def decompose(self): | |
return self.tensors, self.mask | |
def __repr__(self): | |
return str(self.tensors) | |
def shape(self): | |
return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape} | |
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): | |
# TODO make this more general | |
if tensor_list[0].ndim == 3: | |
if torchvision._is_tracing(): | |
# nested_tensor_from_tensor_list() does not export well to ONNX | |
# call _onnx_nested_tensor_from_tensor_list() instead | |
return _onnx_nested_tensor_from_tensor_list(tensor_list) | |
# TODO make it support different-sized images | |
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) | |
batch_shape = [len(tensor_list)] + max_size | |
b, c, h, w = batch_shape | |
dtype = tensor_list[0].dtype | |
device = tensor_list[0].device | |
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) | |
for img, pad_img, m in zip(tensor_list, tensor, mask): | |
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
m[: img.shape[1], : img.shape[2]] = False | |
else: | |
raise ValueError("not supported") | |
return NestedTensor(tensor, mask) | |
# _onnx_nested_tensor_from_tensor_list() is an implementation of | |
# nested_tensor_from_tensor_list() that is supported by ONNX tracing. | |
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: | |
max_size = [] | |
for i in range(tensor_list[0].dim()): | |
max_size_i = torch.max( | |
torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) | |
).to(torch.int64) | |
max_size.append(max_size_i) | |
max_size = tuple(max_size) | |
# work around for | |
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
# m[: img.shape[1], :img.shape[2]] = False | |
# which is not yet supported in onnx | |
padded_imgs = [] | |
padded_masks = [] | |
for img in tensor_list: | |
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] | |
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) | |
padded_imgs.append(padded_img) | |
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) | |
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) | |
padded_masks.append(padded_mask.to(torch.bool)) | |
tensor = torch.stack(padded_imgs) | |
mask = torch.stack(padded_masks) | |
return NestedTensor(tensor, mask=mask) | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop("force", False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(*args, **kwargs): | |
if is_main_process(): | |
torch.save(*args, **kwargs) | |
def init_distributed_mode(args): | |
if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ["WORLD_SIZE"]) | |
args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"]) | |
# launch by torch.distributed.launch | |
# Single node | |
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ... | |
# Multi nodes | |
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... | |
# python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ... | |
# args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK')) | |
# local_world_size = int(os.environ['GPU_PER_NODE_COUNT']) | |
# args.world_size = args.world_size * local_world_size | |
# args.gpu = args.local_rank = int(os.environ['LOCAL_RANK']) | |
# args.rank = args.rank * local_world_size + args.local_rank | |
print( | |
"world size: {}, rank: {}, local rank: {}".format( | |
args.world_size, args.rank, args.local_rank | |
) | |
) | |
print(json.dumps(dict(os.environ), indent=2)) | |
elif "SLURM_PROCID" in os.environ: | |
args.rank = int(os.environ["SLURM_PROCID"]) | |
args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"]) | |
args.world_size = int(os.environ["SLURM_NPROCS"]) | |
print( | |
"world size: {}, world rank: {}, local rank: {}, device_count: {}".format( | |
args.world_size, args.rank, args.local_rank, torch.cuda.device_count() | |
) | |
) | |
else: | |
print("Not using distributed mode") | |
args.distributed = False | |
args.world_size = 1 | |
args.rank = 0 | |
args.local_rank = 0 | |
return | |
print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank)) | |
args.distributed = True | |
torch.cuda.set_device(args.local_rank) | |
args.dist_backend = "nccl" | |
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) | |
torch.distributed.init_process_group( | |
backend=args.dist_backend, | |
world_size=args.world_size, | |
rank=args.rank, | |
init_method=args.dist_url, | |
) | |
print("Before torch.distributed.barrier()") | |
torch.distributed.barrier() | |
print("End torch.distributed.barrier()") | |
setup_for_distributed(args.rank == 0) | |
def accuracy(output, target, topk=(1,)): | |
"""Computes the precision@k for the specified values of k""" | |
if target.numel() == 0: | |
return [torch.zeros([], device=output.device)] | |
maxk = max(topk) | |
batch_size = target.size(0) | |
_, pred = output.topk(maxk, 1, True, True) | |
pred = pred.t() | |
correct = pred.eq(target.view(1, -1).expand_as(pred)) | |
res = [] | |
for k in topk: | |
correct_k = correct[:k].view(-1).float().sum(0) | |
res.append(correct_k.mul_(100.0 / batch_size)) | |
return res | |
def accuracy_onehot(pred, gt): | |
"""_summary_ | |
Args: | |
pred (_type_): n, c | |
gt (_type_): n, c | |
""" | |
tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum() | |
acc = tp / gt.shape[0] * 100 | |
return acc | |
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor | |
""" | |
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. | |
This will eventually be supported natively by PyTorch, and this | |
class can go away. | |
""" | |
if __torchvision_need_compat_flag < 0.7: | |
if input.numel() > 0: | |
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners) | |
output_shape = _output_size(2, input, size, scale_factor) | |
output_shape = list(input.shape[:-2]) + list(output_shape) | |
return _new_empty_tensor(input, output_shape) | |
else: | |
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) | |
class color_sys: | |
def __init__(self, num_colors) -> None: | |
self.num_colors = num_colors | |
colors = [] | |
for i in np.arange(0.0, 360.0, 360.0 / num_colors): | |
hue = i / 360.0 | |
lightness = (50 + np.random.rand() * 10) / 100.0 | |
saturation = (90 + np.random.rand() * 10) / 100.0 | |
colors.append( | |
tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]) | |
) | |
self.colors = colors | |
def __call__(self, idx): | |
return self.colors[idx] | |
def inverse_sigmoid(x, eps=1e-3): | |
x = x.clamp(min=0, max=1) | |
x1 = x.clamp(min=eps) | |
x2 = (1 - x).clamp(min=eps) | |
return torch.log(x1 / x2) | |
def clean_state_dict(state_dict): | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
if k[:7] == "module.": | |
k = k[7:] # remove `module.` | |
new_state_dict[k] = v | |
return new_state_dict | |