Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Image/Text processor class for CLIPSeg | |
""" | |
import warnings | |
from ...processing_utils import ProcessorMixin | |
from ...tokenization_utils_base import BatchEncoding | |
class CLIPSegProcessor(ProcessorMixin): | |
r""" | |
Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor. | |
[`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the | |
[`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information. | |
Args: | |
image_processor ([`ViTImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`CLIPTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "ViTImageProcessor" | |
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") | |
def __init__(self, image_processor=None, tokenizer=None, **kwargs): | |
feature_extractor = None | |
if "feature_extractor" in kwargs: | |
warnings.warn( | |
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" | |
" instead.", | |
FutureWarning, | |
) | |
feature_extractor = kwargs.pop("feature_extractor") | |
image_processor = image_processor if image_processor is not None else feature_extractor | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
super().__init__(image_processor, tokenizer) | |
def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs): | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of | |
the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image, | |
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape | |
(C, H, W), where C is a number of channels, H and W are image height and width. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
""" | |
if text is None and visual_prompt is None and images is None: | |
raise ValueError("You have to specify either text, visual prompt or images.") | |
if text is not None and visual_prompt is not None: | |
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") | |
if text is not None: | |
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) | |
if visual_prompt is not None: | |
prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs) | |
if images is not None: | |
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) | |
if visual_prompt is not None and images is not None: | |
encoding = { | |
"pixel_values": image_features.pixel_values, | |
"conditional_pixel_values": prompt_features.pixel_values, | |
} | |
return encoding | |
elif text is not None and images is not None: | |
encoding["pixel_values"] = image_features.pixel_values | |
return encoding | |
elif text is not None: | |
return encoding | |
elif visual_prompt is not None: | |
encoding = { | |
"conditional_pixel_values": prompt_features.pixel_values, | |
} | |
return encoding | |
else: | |
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def feature_extractor_class(self): | |
warnings.warn( | |
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", | |
FutureWarning, | |
) | |
return self.image_processor_class | |
def feature_extractor(self): | |
warnings.warn( | |
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", | |
FutureWarning, | |
) | |
return self.image_processor | |