Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2018 Salesforce and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for Salesforce CTRL.""" | |
import json | |
import os | |
from typing import Optional, Tuple | |
import regex as re | |
from ...tokenization_utils import PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"merges_file": "merges.txt", | |
} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, | |
"merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"ctrl": 256, | |
} | |
CONTROL_CODES = { | |
"Pregnancy": 168629, | |
"Christianity": 7675, | |
"Explain": 106423, | |
"Fitness": 63440, | |
"Saving": 63163, | |
"Ask": 27171, | |
"Ass": 95985, | |
"Joke": 163509, | |
"Questions": 45622, | |
"Thoughts": 49605, | |
"Retail": 52342, | |
"Feminism": 164338, | |
"Writing": 11992, | |
"Atheism": 192263, | |
"Netflix": 48616, | |
"Computing": 39639, | |
"Opinion": 43213, | |
"Alone": 44967, | |
"Funny": 58917, | |
"Gaming": 40358, | |
"Human": 4088, | |
"India": 1331, | |
"Joker": 77138, | |
"Diet": 36206, | |
"Legal": 11859, | |
"Norman": 4939, | |
"Tip": 72689, | |
"Weight": 52343, | |
"Movies": 46273, | |
"Running": 23425, | |
"Science": 2090, | |
"Horror": 37793, | |
"Confession": 60572, | |
"Finance": 12250, | |
"Politics": 16360, | |
"Scary": 191985, | |
"Support": 12654, | |
"Technologies": 32516, | |
"Teenage": 66160, | |
"Event": 32769, | |
"Learned": 67460, | |
"Notion": 182770, | |
"Wikipedia": 37583, | |
"Books": 6665, | |
"Extract": 76050, | |
"Confessions": 102701, | |
"Conspiracy": 75932, | |
"Links": 63674, | |
"Narcissus": 150425, | |
"Relationship": 54766, | |
"Relationships": 134796, | |
"Reviews": 41671, | |
"News": 4256, | |
"Translation": 26820, | |
"multilingual": 128406, | |
} | |
def get_pairs(word): | |
""" | |
Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
pairs = set(pairs) | |
return pairs | |
class CTRLTokenizer(PreTrainedTokenizer): | |
""" | |
Construct a CTRL tokenizer. Based on Byte-Pair-Encoding. | |
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to | |
this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`): | |
Path to the vocabulary file. | |
merges_file (`str`): | |
Path to the merges file. | |
unk_token (`str`, *optional*, defaults to `"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
control_codes = CONTROL_CODES | |
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs): | |
with open(vocab_file, encoding="utf-8") as vocab_handle: | |
self.encoder = json.load(vocab_handle) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
with open(merges_file, encoding="utf-8") as merges_handle: | |
merges = merges_handle.read().split("\n")[1:-1] | |
merges = [tuple(merge.split()) for merge in merges] | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {} | |
super().__init__(unk_token=unk_token, **kwargs) | |
def vocab_size(self): | |
return len(self.encoder) | |
def get_vocab(self): | |
return dict(self.encoder, **self.added_tokens_encoder) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
except ValueError: | |
new_word.extend(word[i:]) | |
break | |
else: | |
new_word.extend(word[i:j]) | |
i = j | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = "@@ ".join(word) | |
word = word[:-4] | |
self.cache[token] = word | |
return word | |
def _tokenize(self, text): | |
"""Tokenize a string.""" | |
split_tokens = [] | |
words = re.findall(r"\S+\n?", text) | |
for token in words: | |
split_tokens.extend(list(self.bpe(token).split(" "))) | |
return split_tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
return self.encoder.get(token, self.encoder.get(self.unk_token)) | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
return self.decoder.get(index, self.unk_token) | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
out_string = " ".join(tokens).replace("@@ ", "").strip() | |
return out_string | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
merge_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] | |
) | |
with open(vocab_file, "w", encoding="utf-8") as f: | |
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") | |
index = 0 | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
writer.write("#version: 0.2\n") | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!" | |
) | |
index = token_index | |
writer.write(" ".join(bpe_tokens) + "\n") | |
index += 1 | |
return vocab_file, merge_file | |
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): | |
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) | |
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) | |
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) | |
# return ''.join(tokens_generated_so_far) | |