Spaces:
Running
on
T4
Running
on
T4
# coding=utf-8 | |
# Copyright 2020, Microsoft and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" DeBERTa model configuration""" | |
from collections import OrderedDict | |
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...onnx import OnnxConfig | |
from ...utils import logging | |
if TYPE_CHECKING: | |
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType | |
logger = logging.get_logger(__name__) | |
DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/config.json", | |
"microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/config.json", | |
"microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/config.json", | |
"microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/config.json", | |
"microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/config.json", | |
"microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/config.json", | |
} | |
class DebertaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is | |
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa | |
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Arguments: | |
vocab_size (`int`, *optional*, defaults to 30522): | |
Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` | |
are supported. | |
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (`int`, *optional*, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
type_vocab_size (`int`, *optional*, defaults to 2): | |
The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
relative_attention (`bool`, *optional*, defaults to `False`): | |
Whether use relative position encoding. | |
max_relative_positions (`int`, *optional*, defaults to 1): | |
The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value | |
as `max_position_embeddings`. | |
pad_token_id (`int`, *optional*, defaults to 0): | |
The value used to pad input_ids. | |
position_biased_input (`bool`, *optional*, defaults to `True`): | |
Whether add absolute position embedding to content embedding. | |
pos_att_type (`List[str]`, *optional*): | |
The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, | |
`["p2c", "c2p"]`. | |
layer_norm_eps (`float`, optional, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
Example: | |
```python | |
>>> from transformers import DebertaConfig, DebertaModel | |
>>> # Initializing a DeBERTa microsoft/deberta-base style configuration | |
>>> configuration = DebertaConfig() | |
>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration | |
>>> model = DebertaModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "deberta" | |
def __init__( | |
self, | |
vocab_size=50265, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=0, | |
initializer_range=0.02, | |
layer_norm_eps=1e-7, | |
relative_attention=False, | |
max_relative_positions=-1, | |
pad_token_id=0, | |
position_biased_input=True, | |
pos_att_type=None, | |
pooler_dropout=0, | |
pooler_hidden_act="gelu", | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.relative_attention = relative_attention | |
self.max_relative_positions = max_relative_positions | |
self.pad_token_id = pad_token_id | |
self.position_biased_input = position_biased_input | |
# Backwards compatibility | |
if type(pos_att_type) == str: | |
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] | |
self.pos_att_type = pos_att_type | |
self.vocab_size = vocab_size | |
self.layer_norm_eps = layer_norm_eps | |
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) | |
self.pooler_dropout = pooler_dropout | |
self.pooler_hidden_act = pooler_hidden_act | |
# Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig | |
class DebertaOnnxConfig(OnnxConfig): | |
def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
if self.task == "multiple-choice": | |
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} | |
else: | |
dynamic_axis = {0: "batch", 1: "sequence"} | |
if self._config.type_vocab_size > 0: | |
return OrderedDict( | |
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] | |
) | |
else: | |
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) | |
def default_onnx_opset(self) -> int: | |
return 12 | |
def generate_dummy_inputs( | |
self, | |
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], | |
batch_size: int = -1, | |
seq_length: int = -1, | |
num_choices: int = -1, | |
is_pair: bool = False, | |
framework: Optional["TensorType"] = None, | |
num_channels: int = 3, | |
image_width: int = 40, | |
image_height: int = 40, | |
tokenizer: "PreTrainedTokenizerBase" = None, | |
) -> Mapping[str, Any]: | |
dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) | |
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: | |
del dummy_inputs["token_type_ids"] | |
return dummy_inputs | |