Spaces:
Running
on
T4
Running
on
T4
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import os | |
from argparse import ArgumentParser, Namespace | |
from importlib import import_module | |
import huggingface_hub | |
import numpy as np | |
from packaging import version | |
from .. import ( | |
FEATURE_EXTRACTOR_MAPPING, | |
IMAGE_PROCESSOR_MAPPING, | |
PROCESSOR_MAPPING, | |
TOKENIZER_MAPPING, | |
AutoConfig, | |
AutoFeatureExtractor, | |
AutoImageProcessor, | |
AutoProcessor, | |
AutoTokenizer, | |
is_datasets_available, | |
is_tf_available, | |
is_torch_available, | |
) | |
from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging | |
from . import BaseTransformersCLICommand | |
if is_tf_available(): | |
import tensorflow as tf | |
tf.config.experimental.enable_tensor_float_32_execution(False) | |
if is_torch_available(): | |
import torch | |
if is_datasets_available(): | |
from datasets import load_dataset | |
MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors | |
def convert_command_factory(args: Namespace): | |
""" | |
Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint. | |
Returns: ServeCommand | |
""" | |
return PTtoTFCommand( | |
args.model_name, | |
args.local_dir, | |
args.max_error, | |
args.new_weights, | |
args.no_pr, | |
args.push, | |
args.extra_commit_description, | |
args.override_model_class, | |
) | |
class PTtoTFCommand(BaseTransformersCLICommand): | |
def register_subcommand(parser: ArgumentParser): | |
""" | |
Register this command to argparse so it's available for the transformer-cli | |
Args: | |
parser: Root parser to register command-specific arguments | |
""" | |
train_parser = parser.add_parser( | |
"pt-to-tf", | |
help=( | |
"CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint." | |
" Can also be used to validate existing weights without opening PRs, with --no-pr." | |
), | |
) | |
train_parser.add_argument( | |
"--model-name", | |
type=str, | |
required=True, | |
help="The model name, including owner/organization, as seen on the hub.", | |
) | |
train_parser.add_argument( | |
"--local-dir", | |
type=str, | |
default="", | |
help="Optional local directory of the model repository. Defaults to /tmp/{model_name}", | |
) | |
train_parser.add_argument( | |
"--max-error", | |
type=float, | |
default=MAX_ERROR, | |
help=( | |
f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk." | |
), | |
) | |
train_parser.add_argument( | |
"--new-weights", | |
action="store_true", | |
help="Optional flag to create new TensorFlow weights, even if they already exist.", | |
) | |
train_parser.add_argument( | |
"--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights." | |
) | |
train_parser.add_argument( | |
"--push", | |
action="store_true", | |
help="Optional flag to push the weights directly to `main` (requires permissions)", | |
) | |
train_parser.add_argument( | |
"--extra-commit-description", | |
type=str, | |
default="", | |
help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).", | |
) | |
train_parser.add_argument( | |
"--override-model-class", | |
type=str, | |
default=None, | |
help="If you think you know better than the auto-detector, you can specify the model class here. " | |
"Can be either an AutoModel class or a specific model class like BertForSequenceClassification.", | |
) | |
train_parser.set_defaults(func=convert_command_factory) | |
def find_pt_tf_differences(pt_outputs, tf_outputs): | |
""" | |
Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences. | |
""" | |
# 1. All output attributes must be the same | |
pt_out_attrs = set(pt_outputs.keys()) | |
tf_out_attrs = set(tf_outputs.keys()) | |
if pt_out_attrs != tf_out_attrs: | |
raise ValueError( | |
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:" | |
f" {tf_out_attrs})" | |
) | |
# 2. For each output attribute, computes the difference | |
def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""): | |
# If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in | |
# recursivelly, keeping the name of the attribute. | |
if isinstance(pt_out, torch.Tensor): | |
tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy())) | |
differences[attr_name] = tensor_difference | |
else: | |
root_name = attr_name | |
for i, pt_item in enumerate(pt_out): | |
# If it is a named attribute, we keep the name. Otherwise, just its index. | |
if isinstance(pt_item, str): | |
branch_name = root_name + pt_item | |
tf_item = tf_out[pt_item] | |
pt_item = pt_out[pt_item] | |
else: | |
branch_name = root_name + f"[{i}]" | |
tf_item = tf_out[i] | |
differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name) | |
return differences | |
return _find_pt_tf_differences(pt_outputs, tf_outputs, {}) | |
def __init__( | |
self, | |
model_name: str, | |
local_dir: str, | |
max_error: float, | |
new_weights: bool, | |
no_pr: bool, | |
push: bool, | |
extra_commit_description: str, | |
override_model_class: str, | |
*args, | |
): | |
self._logger = logging.get_logger("transformers-cli/pt_to_tf") | |
self._model_name = model_name | |
self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name) | |
self._max_error = max_error | |
self._new_weights = new_weights | |
self._no_pr = no_pr | |
self._push = push | |
self._extra_commit_description = extra_commit_description | |
self._override_model_class = override_model_class | |
def get_inputs(self, pt_model, tf_dummy_inputs, config): | |
""" | |
Returns the right inputs for the model, based on its signature. | |
""" | |
def _get_audio_input(): | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
speech_samples = ds.sort("id").select(range(2))[:2]["audio"] | |
raw_samples = [x["array"] for x in speech_samples] | |
return raw_samples | |
model_config_class = type(pt_model.config) | |
if model_config_class in PROCESSOR_MAPPING: | |
processor = AutoProcessor.from_pretrained(self._local_dir) | |
if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None: | |
processor.tokenizer.pad_token = processor.tokenizer.eos_token | |
elif model_config_class in IMAGE_PROCESSOR_MAPPING: | |
processor = AutoImageProcessor.from_pretrained(self._local_dir) | |
elif model_config_class in FEATURE_EXTRACTOR_MAPPING: | |
processor = AutoFeatureExtractor.from_pretrained(self._local_dir) | |
elif model_config_class in TOKENIZER_MAPPING: | |
processor = AutoTokenizer.from_pretrained(self._local_dir) | |
if processor.pad_token is None: | |
processor.pad_token = processor.eos_token | |
else: | |
raise ValueError(f"Unknown data processing type (model config type: {model_config_class})") | |
model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys()) | |
processor_inputs = {} | |
if "input_ids" in model_forward_signature: | |
processor_inputs.update( | |
{ | |
"text": ["Hi there!", "I am a batch with more than one row and different input lengths."], | |
"padding": True, | |
"truncation": True, | |
} | |
) | |
if "pixel_values" in model_forward_signature: | |
sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"] | |
processor_inputs.update({"images": sample_images}) | |
if "input_features" in model_forward_signature: | |
feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters | |
# Pad to the largest input length by default but take feature extractor default | |
# padding value if it exists e.g. "max_length" and is not False or None | |
if "padding" in feature_extractor_signature: | |
default_strategy = feature_extractor_signature["padding"].default | |
if default_strategy is not False and default_strategy is not None: | |
padding_strategy = default_strategy | |
else: | |
padding_strategy = True | |
else: | |
padding_strategy = True | |
processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy}) | |
if "input_values" in model_forward_signature: # Wav2Vec2 audio input | |
processor_inputs.update({"audio": _get_audio_input(), "padding": True}) | |
pt_input = processor(**processor_inputs, return_tensors="pt") | |
tf_input = processor(**processor_inputs, return_tensors="tf") | |
# Extra input requirements, in addition to the input modality | |
if ( | |
config.is_encoder_decoder | |
or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder")) | |
or "decoder_input_ids" in tf_dummy_inputs | |
): | |
decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0) | |
pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)}) | |
tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)}) | |
return pt_input, tf_input | |
def run(self): | |
# hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens. | |
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"): | |
raise ImportError( | |
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub" | |
" installation." | |
) | |
else: | |
from huggingface_hub import Repository, create_commit | |
from huggingface_hub._commit_api import CommitOperationAdd | |
# Fetch remote data | |
repo = Repository(local_dir=self._local_dir, clone_from=self._model_name) | |
# Load config and get the appropriate architecture -- the latter is needed to convert the head's weights | |
config = AutoConfig.from_pretrained(self._local_dir) | |
architectures = config.architectures | |
if self._override_model_class is not None: | |
if self._override_model_class.startswith("TF"): | |
architectures = [self._override_model_class[2:]] | |
else: | |
architectures = [self._override_model_class] | |
try: | |
pt_class = getattr(import_module("transformers"), architectures[0]) | |
except AttributeError: | |
raise ValueError(f"Model class {self._override_model_class} not found in transformers.") | |
try: | |
tf_class = getattr(import_module("transformers"), "TF" + architectures[0]) | |
except AttributeError: | |
raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.") | |
elif architectures is None: # No architecture defined -- use auto classes | |
pt_class = getattr(import_module("transformers"), "AutoModel") | |
tf_class = getattr(import_module("transformers"), "TFAutoModel") | |
self._logger.warning("No detected architecture, using AutoModel/TFAutoModel") | |
else: # Architecture defined -- use it | |
if len(architectures) > 1: | |
raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})") | |
self._logger.warning(f"Detected architecture: {architectures[0]}") | |
pt_class = getattr(import_module("transformers"), architectures[0]) | |
try: | |
tf_class = getattr(import_module("transformers"), "TF" + architectures[0]) | |
except AttributeError: | |
raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.") | |
# Check the TF dummy inputs to see what keys we need in the forward pass | |
tf_from_pt_model = tf_class.from_config(config) | |
tf_dummy_inputs = tf_from_pt_model.dummy_inputs | |
del tf_from_pt_model # Try to keep only one model in memory at a time | |
# Load the model and get some basic inputs | |
pt_model = pt_class.from_pretrained(self._local_dir) | |
pt_model.eval() | |
pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config) | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_input, output_hidden_states=True) | |
del pt_model # will no longer be used, and may have a large memory footprint | |
tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True) | |
tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False) | |
# Confirms that cross loading PT weights into TF worked. | |
crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs) | |
output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k} | |
hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k} | |
if len(output_differences) == 0 and architectures is not None: | |
raise ValueError( | |
f"Something went wrong -- the config file has architectures ({architectures}), but no model head" | |
" output was found. All outputs start with 'hidden'" | |
) | |
max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0 | |
max_crossload_hidden_diff = max(hidden_differences.values()) | |
if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error: | |
raise ValueError( | |
"The cross-loaded TensorFlow model has different outputs, something went wrong!\n" | |
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n" | |
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error]) | |
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n" | |
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error]) | |
) | |
# Save the weights in a TF format (if needed) and confirms that the results are still good | |
tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME) | |
tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME) | |
if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights: | |
tf_from_pt_model.save_pretrained(self._local_dir) | |
del tf_from_pt_model # will no longer be used, and may have a large memory footprint | |
tf_model = tf_class.from_pretrained(self._local_dir) | |
tf_outputs = tf_model(**tf_input, output_hidden_states=True) | |
conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs) | |
output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k} | |
hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k} | |
if len(output_differences) == 0 and architectures is not None: | |
raise ValueError( | |
f"Something went wrong -- the config file has architectures ({architectures}), but no model head" | |
" output was found. All outputs start with 'hidden'" | |
) | |
max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0 | |
max_conversion_hidden_diff = max(hidden_differences.values()) | |
if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error: | |
raise ValueError( | |
"The converted TensorFlow model has different outputs, something went wrong!\n" | |
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n" | |
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error]) | |
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n" | |
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error]) | |
) | |
commit_message = "Update TF weights" if self._new_weights else "Add TF weights" | |
if self._push: | |
repo.git_add(auto_lfs_track=True) | |
repo.git_commit(commit_message) | |
repo.git_push(blocking=True) # this prints a progress bar with the upload | |
self._logger.warning(f"TF weights pushed into {self._model_name}") | |
elif not self._no_pr: | |
self._logger.warning("Uploading the weights into a new PR...") | |
commit_descrition = ( | |
"Model converted by the [`transformers`' `pt_to_tf`" | |
" CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). " | |
"All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n" | |
f"Maximum crossload output difference={max_crossload_output_diff:.3e}; " | |
f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n" | |
f"Maximum conversion output difference={max_conversion_output_diff:.3e}; " | |
f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n" | |
) | |
if self._max_error > MAX_ERROR: | |
commit_descrition += ( | |
f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!" | |
) | |
if self._extra_commit_description: | |
commit_descrition += "\n\n" + self._extra_commit_description | |
# sharded model -> adds all related files (index and .h5 shards) | |
if os.path.exists(tf_weights_index_path): | |
operations = [ | |
CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path) | |
] | |
for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"): | |
operations += [ | |
CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path) | |
] | |
else: | |
operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)] | |
hub_pr_url = create_commit( | |
repo_id=self._model_name, | |
operations=operations, | |
commit_message=commit_message, | |
commit_description=commit_descrition, | |
repo_type="model", | |
create_pr=True, | |
).pr_url | |
self._logger.warning(f"PR open in {hub_pr_url}") | |