Spaces:
Running
on
T4
Running
on
T4
from typing import Any, Dict, List, Union | |
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends | |
from .base import PIPELINE_INIT_ARGS, Pipeline | |
if is_vision_available(): | |
from ..image_utils import load_image | |
if is_torch_available(): | |
import torch | |
from ..models.auto.modeling_auto import ( | |
MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, | |
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, | |
) | |
logger = logging.get_logger(__name__) | |
Prediction = Dict[str, Any] | |
Predictions = List[Prediction] | |
class ObjectDetectionPipeline(Pipeline): | |
""" | |
Object detection pipeline using any `AutoModelForObjectDetection`. This pipeline predicts bounding boxes of objects | |
and their classes. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> detector = pipeline(model="facebook/detr-resnet-50") | |
>>> detector("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") | |
[{'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}, {'score': 0.999, 'label': 'bird', 'box': {'xmin': 398, 'ymin': 105, 'xmax': 767, 'ymax': 507}}] | |
>>> # x, y are expressed relative to the top left hand corner. | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier: | |
`"object-detection"`. | |
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=object-detection). | |
""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if self.framework == "tf": | |
raise ValueError(f"The {self.__class__} is only available in PyTorch.") | |
requires_backends(self, "vision") | |
mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES.copy() | |
mapping.update(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES) | |
self.check_model_type(mapping) | |
def _sanitize_parameters(self, **kwargs): | |
preprocess_params = {} | |
if "timeout" in kwargs: | |
preprocess_params["timeout"] = kwargs["timeout"] | |
postprocess_kwargs = {} | |
if "threshold" in kwargs: | |
postprocess_kwargs["threshold"] = kwargs["threshold"] | |
return preprocess_params, {}, postprocess_kwargs | |
def __call__(self, *args, **kwargs) -> Union[Predictions, List[Prediction]]: | |
""" | |
Detect objects (bounding boxes & classes) in the image(s) passed as inputs. | |
Args: | |
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
The pipeline handles three types of images: | |
- A string containing an HTTP(S) link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images. Images in a batch must all be in the | |
same format: all as HTTP(S) links, all as local paths, or all as PIL images. | |
threshold (`float`, *optional*, defaults to 0.9): | |
The probability necessary to make a prediction. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and | |
the call may block forever. | |
Return: | |
A list of dictionaries or a list of list of dictionaries containing the result. If the input is a single | |
image, will return a list of dictionaries, if the input is a list of several images, will return a list of | |
list of dictionaries corresponding to each image. | |
The dictionaries contain the following keys: | |
- **label** (`str`) -- The class label identified by the model. | |
- **score** (`float`) -- The score attributed by the model for that label. | |
- **box** (`List[Dict[str, int]]`) -- The bounding box of detected object in image's original size. | |
""" | |
return super().__call__(*args, **kwargs) | |
def preprocess(self, image, timeout=None): | |
image = load_image(image, timeout=timeout) | |
target_size = torch.IntTensor([[image.height, image.width]]) | |
inputs = self.image_processor(images=[image], return_tensors="pt") | |
if self.tokenizer is not None: | |
inputs = self.tokenizer(text=inputs["words"], boxes=inputs["boxes"], return_tensors="pt") | |
inputs["target_size"] = target_size | |
return inputs | |
def _forward(self, model_inputs): | |
target_size = model_inputs.pop("target_size") | |
outputs = self.model(**model_inputs) | |
model_outputs = outputs.__class__({"target_size": target_size, **outputs}) | |
if self.tokenizer is not None: | |
model_outputs["bbox"] = model_inputs["bbox"] | |
return model_outputs | |
def postprocess(self, model_outputs, threshold=0.9): | |
target_size = model_outputs["target_size"] | |
if self.tokenizer is not None: | |
# This is a LayoutLMForTokenClassification variant. | |
# The OCR got the boxes and the model classified the words. | |
height, width = target_size[0].tolist() | |
def unnormalize(bbox): | |
return self._get_bounding_box( | |
torch.Tensor( | |
[ | |
(width * bbox[0] / 1000), | |
(height * bbox[1] / 1000), | |
(width * bbox[2] / 1000), | |
(height * bbox[3] / 1000), | |
] | |
) | |
) | |
scores, classes = model_outputs["logits"].squeeze(0).softmax(dim=-1).max(dim=-1) | |
labels = [self.model.config.id2label[prediction] for prediction in classes.tolist()] | |
boxes = [unnormalize(bbox) for bbox in model_outputs["bbox"].squeeze(0)] | |
keys = ["score", "label", "box"] | |
annotation = [dict(zip(keys, vals)) for vals in zip(scores.tolist(), labels, boxes) if vals[0] > threshold] | |
else: | |
# This is a regular ForObjectDetectionModel | |
raw_annotations = self.image_processor.post_process_object_detection(model_outputs, threshold, target_size) | |
raw_annotation = raw_annotations[0] | |
scores = raw_annotation["scores"] | |
labels = raw_annotation["labels"] | |
boxes = raw_annotation["boxes"] | |
raw_annotation["scores"] = scores.tolist() | |
raw_annotation["labels"] = [self.model.config.id2label[label.item()] for label in labels] | |
raw_annotation["boxes"] = [self._get_bounding_box(box) for box in boxes] | |
# {"scores": [...], ...} --> [{"score":x, ...}, ...] | |
keys = ["score", "label", "box"] | |
annotation = [ | |
dict(zip(keys, vals)) | |
for vals in zip(raw_annotation["scores"], raw_annotation["labels"], raw_annotation["boxes"]) | |
] | |
return annotation | |
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]: | |
""" | |
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... } | |
Args: | |
box (`torch.Tensor`): Tensor containing the coordinates in corners format. | |
Returns: | |
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format. | |
""" | |
if self.framework != "pt": | |
raise ValueError("The ObjectDetectionPipeline is only available in PyTorch.") | |
xmin, ymin, xmax, ymax = box.int().tolist() | |
bbox = { | |
"xmin": xmin, | |
"ymin": ymin, | |
"xmax": xmax, | |
"ymax": ymax, | |
} | |
return bbox | |