liuyizhang
commited on
Commit
•
9403943
1
Parent(s):
c419c35
add files
Browse files
GroundingDINO/groundingdino/config/GroundingDINO_SwinB.cfg.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_B_384_22k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
GroundingDINO/groundingdino/datasets/__init__.py
ADDED
File without changes
|
GroundingDINO/groundingdino/util/inference.py
CHANGED
@@ -13,6 +13,10 @@ from groundingdino.util.misc import clean_state_dict
|
|
13 |
from groundingdino.util.slconfig import SLConfig
|
14 |
from groundingdino.util.utils import get_phrases_from_posmap
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def preprocess_caption(caption: str) -> str:
|
18 |
result = caption.lower().strip()
|
@@ -96,3 +100,143 @@ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor
|
|
96 |
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
97 |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
98 |
return annotated_frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from groundingdino.util.slconfig import SLConfig
|
14 |
from groundingdino.util.utils import get_phrases_from_posmap
|
15 |
|
16 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
17 |
+
# OLD API
|
18 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
19 |
+
|
20 |
|
21 |
def preprocess_caption(caption: str) -> str:
|
22 |
result = caption.lower().strip()
|
|
|
100 |
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
|
101 |
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
102 |
return annotated_frame
|
103 |
+
|
104 |
+
|
105 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
106 |
+
# NEW API
|
107 |
+
# ----------------------------------------------------------------------------------------------------------------------
|
108 |
+
|
109 |
+
|
110 |
+
class Model:
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
model_config_path: str,
|
115 |
+
model_checkpoint_path: str,
|
116 |
+
device: str = "cuda"
|
117 |
+
):
|
118 |
+
self.model = load_model(
|
119 |
+
model_config_path=model_config_path,
|
120 |
+
model_checkpoint_path=model_checkpoint_path,
|
121 |
+
device=device
|
122 |
+
).to(device)
|
123 |
+
self.device = device
|
124 |
+
|
125 |
+
def predict_with_caption(
|
126 |
+
self,
|
127 |
+
image: np.ndarray,
|
128 |
+
caption: str,
|
129 |
+
box_threshold: float = 0.35,
|
130 |
+
text_threshold: float = 0.25
|
131 |
+
) -> Tuple[sv.Detections, List[str]]:
|
132 |
+
"""
|
133 |
+
import cv2
|
134 |
+
|
135 |
+
image = cv2.imread(IMAGE_PATH)
|
136 |
+
|
137 |
+
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
138 |
+
detections, labels = model.predict_with_caption(
|
139 |
+
image=image,
|
140 |
+
caption=caption,
|
141 |
+
box_threshold=BOX_THRESHOLD,
|
142 |
+
text_threshold=TEXT_THRESHOLD
|
143 |
+
)
|
144 |
+
|
145 |
+
import supervision as sv
|
146 |
+
|
147 |
+
box_annotator = sv.BoxAnnotator()
|
148 |
+
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
|
149 |
+
"""
|
150 |
+
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
151 |
+
boxes, logits, phrases = predict(
|
152 |
+
model=self.model,
|
153 |
+
image=processed_image,
|
154 |
+
caption=caption,
|
155 |
+
box_threshold=box_threshold,
|
156 |
+
text_threshold=text_threshold)
|
157 |
+
source_h, source_w, _ = image.shape
|
158 |
+
detections = Model.post_process_result(
|
159 |
+
source_h=source_h,
|
160 |
+
source_w=source_w,
|
161 |
+
boxes=boxes,
|
162 |
+
logits=logits)
|
163 |
+
return detections, phrases
|
164 |
+
|
165 |
+
def predict_with_classes(
|
166 |
+
self,
|
167 |
+
image: np.ndarray,
|
168 |
+
classes: List[str],
|
169 |
+
box_threshold: float,
|
170 |
+
text_threshold: float
|
171 |
+
) -> sv.Detections:
|
172 |
+
"""
|
173 |
+
import cv2
|
174 |
+
|
175 |
+
image = cv2.imread(IMAGE_PATH)
|
176 |
+
|
177 |
+
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
|
178 |
+
detections = model.predict_with_classes(
|
179 |
+
image=image,
|
180 |
+
classes=CLASSES,
|
181 |
+
box_threshold=BOX_THRESHOLD,
|
182 |
+
text_threshold=TEXT_THRESHOLD
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
import supervision as sv
|
187 |
+
|
188 |
+
box_annotator = sv.BoxAnnotator()
|
189 |
+
annotated_image = box_annotator.annotate(scene=image, detections=detections)
|
190 |
+
"""
|
191 |
+
caption = ", ".join(classes)
|
192 |
+
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
|
193 |
+
boxes, logits, phrases = predict(
|
194 |
+
model=self.model,
|
195 |
+
image=processed_image,
|
196 |
+
caption=caption,
|
197 |
+
box_threshold=box_threshold,
|
198 |
+
text_threshold=text_threshold)
|
199 |
+
source_h, source_w, _ = image.shape
|
200 |
+
detections = Model.post_process_result(
|
201 |
+
source_h=source_h,
|
202 |
+
source_w=source_w,
|
203 |
+
boxes=boxes,
|
204 |
+
logits=logits)
|
205 |
+
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
|
206 |
+
detections.class_id = class_id
|
207 |
+
return detections
|
208 |
+
|
209 |
+
@staticmethod
|
210 |
+
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
|
211 |
+
transform = T.Compose(
|
212 |
+
[
|
213 |
+
T.RandomResize([800], max_size=1333),
|
214 |
+
T.ToTensor(),
|
215 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
216 |
+
]
|
217 |
+
)
|
218 |
+
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
219 |
+
image_transformed, _ = transform(image_pillow, None)
|
220 |
+
return image_transformed
|
221 |
+
|
222 |
+
@staticmethod
|
223 |
+
def post_process_result(
|
224 |
+
source_h: int,
|
225 |
+
source_w: int,
|
226 |
+
boxes: torch.Tensor,
|
227 |
+
logits: torch.Tensor
|
228 |
+
) -> sv.Detections:
|
229 |
+
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
|
230 |
+
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
|
231 |
+
confidence = logits.numpy()
|
232 |
+
return sv.Detections(xyxy=xyxy, confidence=confidence)
|
233 |
+
|
234 |
+
@staticmethod
|
235 |
+
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
|
236 |
+
class_ids = []
|
237 |
+
for phrase in phrases:
|
238 |
+
try:
|
239 |
+
class_ids.append(classes.index(phrase))
|
240 |
+
except ValueError:
|
241 |
+
class_ids.append(None)
|
242 |
+
return np.array(class_ids)
|
GroundingDINO/groundingdino/util/slconfig.py
CHANGED
@@ -2,13 +2,13 @@
|
|
2 |
# Modified from mmcv
|
3 |
# ==========================================================
|
4 |
import ast
|
|
|
5 |
import os.path as osp
|
6 |
import shutil
|
7 |
import sys
|
8 |
import tempfile
|
9 |
from argparse import Action
|
10 |
from importlib import import_module
|
11 |
-
import platform
|
12 |
|
13 |
from addict import Dict
|
14 |
from yapf.yapflib.yapf_api import FormatCode
|
@@ -81,7 +81,7 @@ class SLConfig(object):
|
|
81 |
with tempfile.TemporaryDirectory() as temp_config_dir:
|
82 |
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
|
83 |
temp_config_name = osp.basename(temp_config_file.name)
|
84 |
-
if
|
85 |
temp_config_file.close()
|
86 |
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
|
87 |
temp_module_name = osp.splitext(temp_config_name)[0]
|
|
|
2 |
# Modified from mmcv
|
3 |
# ==========================================================
|
4 |
import ast
|
5 |
+
import os
|
6 |
import os.path as osp
|
7 |
import shutil
|
8 |
import sys
|
9 |
import tempfile
|
10 |
from argparse import Action
|
11 |
from importlib import import_module
|
|
|
12 |
|
13 |
from addict import Dict
|
14 |
from yapf.yapflib.yapf_api import FormatCode
|
|
|
81 |
with tempfile.TemporaryDirectory() as temp_config_dir:
|
82 |
temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
|
83 |
temp_config_name = osp.basename(temp_config_file.name)
|
84 |
+
if os.name == 'nt':
|
85 |
temp_config_file.close()
|
86 |
shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
|
87 |
temp_module_name = osp.splitext(temp_config_name)[0]
|
GroundingDINO/groundingdino/version.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
__version__ =
|
|
|
1 |
+
__version__ = "0.1.0"
|