Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import torch
|
5 |
|
6 |
import gradio as gr
|
@@ -17,9 +14,6 @@ import os
|
|
17 |
import time
|
18 |
import demucs.api
|
19 |
|
20 |
-
import tqdm
|
21 |
-
|
22 |
-
os.environ["GRADIO_TEMP_DIR"] = "/home/yoach/spaces/tmp"
|
23 |
|
24 |
|
25 |
MODEL_NAME = "openai/whisper-large-v3"
|
@@ -45,32 +39,30 @@ def separate_vocal(path):
|
|
45 |
return path
|
46 |
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
if inputs_path is None:
|
50 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
51 |
|
52 |
-
pbar = tqdm.tqdm(total=4, desc="Overall progression")
|
53 |
-
|
54 |
sampling_rate, inputs = wavfile.read(inputs_path)
|
55 |
|
56 |
-
pbar.update(1)
|
57 |
-
pbar.set_description("Transcribe using Whisper.")
|
58 |
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
59 |
|
60 |
text = out["text"]
|
61 |
|
62 |
-
pbar.update(1)
|
63 |
-
pbar.set_description("Merge chunks.")
|
64 |
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)
|
65 |
|
66 |
-
pbar.update(1)
|
67 |
-
pbar.set_description("Create dataset.")
|
68 |
-
|
69 |
-
|
70 |
transcripts = []
|
71 |
audios = []
|
72 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
73 |
-
for i,chunk in
|
74 |
|
75 |
# TODO: make sure 1D or 2D?
|
76 |
arr = chunk["audio"]
|
@@ -87,12 +79,10 @@ def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAut
|
|
87 |
|
88 |
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
93 |
|
94 |
-
|
95 |
-
return text, [[transcript] for transcript in transcripts]
|
96 |
|
97 |
|
98 |
def _return_yt_html_embed(yt_url):
|
@@ -135,18 +125,11 @@ def download_yt_audio(yt_url, filename):
|
|
135 |
raise gr.Error(str(err))
|
136 |
|
137 |
|
138 |
-
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000
|
139 |
-
progress=gr.Progress(track_tqdm=True)):
|
140 |
-
|
141 |
-
pbar = tqdm.tqdm(total=5, desc="Overall progression")
|
142 |
-
|
143 |
html_embed_str = _return_yt_html_embed(yt_url)
|
144 |
|
145 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
146 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
147 |
-
pbar.update(1)
|
148 |
-
pbar.set_description("Download Youtube video.")
|
149 |
-
|
150 |
download_yt_audio(yt_url, filepath)
|
151 |
with open(filepath, "rb") as f:
|
152 |
inputs_path = f.read()
|
@@ -154,25 +137,18 @@ def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthT
|
|
154 |
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
155 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
156 |
|
157 |
-
pbar.update(1)
|
158 |
-
pbar.set_description("Transcribe using Whisper.")
|
159 |
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
160 |
|
161 |
text = out["text"]
|
162 |
|
163 |
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
164 |
|
165 |
-
pbar.update(1)
|
166 |
-
pbar.set_description("Merge chunks.")
|
167 |
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
|
168 |
|
169 |
-
pbar.update(1)
|
170 |
-
pbar.set_description("Create dataset.")
|
171 |
-
|
172 |
transcripts = []
|
173 |
audios = []
|
174 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
175 |
-
for i,chunk in
|
176 |
|
177 |
# TODO: make sure 1D or 2D?
|
178 |
arr = chunk["audio"]
|
@@ -189,28 +165,23 @@ def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthT
|
|
189 |
|
190 |
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
195 |
|
196 |
-
pbar.close()
|
197 |
|
198 |
-
return html_embed_str, text
|
199 |
|
200 |
|
201 |
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
|
202 |
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
|
203 |
# return list of dictionnaries (text, audio)
|
204 |
# min duration is in seconds
|
205 |
-
|
206 |
min_duration = int(min_duration * sampling_rate)
|
207 |
-
|
208 |
|
209 |
new_chunks = []
|
210 |
while chunks:
|
211 |
current_chunk = chunks.pop(0)
|
212 |
-
pbar.update(1)
|
213 |
-
|
214 |
begin, end = current_chunk["timestamp"]
|
215 |
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
216 |
|
@@ -222,7 +193,7 @@ def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_c
|
|
222 |
chunk_to_concat = [audio_array[begin:end]]
|
223 |
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
|
224 |
ch = chunks.pop(0)
|
225 |
-
|
226 |
begin, end = ch["timestamp"]
|
227 |
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
228 |
current_dur += end-begin
|
@@ -238,75 +209,53 @@ def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_c
|
|
238 |
"audio": np.concatenate(chunk_to_concat),
|
239 |
})
|
240 |
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
|
241 |
-
|
242 |
-
pbar.close()
|
243 |
|
244 |
return new_chunks
|
245 |
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
#container{
|
250 |
-
margin: 0 auto;
|
251 |
-
max-width: 80rem;
|
252 |
-
}
|
253 |
-
#intro{
|
254 |
-
max-width: 100%;
|
255 |
-
text-align: center;
|
256 |
-
margin: 0 auto;
|
257 |
-
}
|
258 |
-
"""
|
259 |
-
with gr.Blocks(css=css) as demo:
|
260 |
with gr.Row():
|
261 |
gr.LoginButton().activate()
|
262 |
gr.LogoutButton()
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
gr.Markdown(
|
267 |
-
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
268 |
-
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
269 |
-
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
270 |
-
)
|
271 |
-
with gr.Column():
|
272 |
-
audio_file = gr.Audio(type="filepath")
|
273 |
-
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
274 |
-
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
275 |
-
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name")
|
276 |
-
|
277 |
-
with gr.Row():
|
278 |
-
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
|
279 |
-
submit_file = gr.Button("Submit")
|
280 |
-
|
281 |
-
with gr.Column():
|
282 |
-
transcript_file = gr.Textbox(label="Transcription")
|
283 |
-
dataset_file = gr.Dataset(components=["text"], headers=["Transcripts"])
|
284 |
-
|
285 |
-
|
286 |
-
with gr.Tab("YouTube"):
|
287 |
-
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
|
288 |
-
gr.Markdown(
|
289 |
-
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
290 |
-
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
291 |
-
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
292 |
-
)
|
293 |
-
with gr.Column():
|
294 |
-
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
295 |
-
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
296 |
-
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
297 |
-
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name")
|
298 |
-
|
299 |
-
with gr.Row():
|
300 |
-
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
|
301 |
-
submit_youtube = gr.Button("Submit")
|
302 |
-
|
303 |
-
with gr.Column():
|
304 |
-
html_youtube = gr.HTML()
|
305 |
-
transcript_youtube = gr.Textbox(label="Transcription")
|
306 |
-
dataset_youtube = gr.Dataset(components=["text"], headers=["Transcripts"])
|
307 |
-
|
308 |
-
|
309 |
-
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[transcript_file, dataset_file])
|
310 |
-
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, transcript_youtube, dataset_youtube])
|
311 |
-
|
312 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
|
3 |
import gradio as gr
|
|
|
14 |
import time
|
15 |
import demucs.api
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
MODEL_NAME = "openai/whisper-large-v3"
|
|
|
39 |
return path
|
40 |
|
41 |
|
42 |
+
|
43 |
+
# def separate_vocal(path, track_name, output_folder, demucs_model_name = "htdemucs_ft"):
|
44 |
+
#
|
45 |
+
# os.system(f"python3 -m demucs.separate --two-stems=vocals -n {demucs_model_name} {path} -o {output_folder}")
|
46 |
+
#
|
47 |
+
# return os.path.join(output_folder, demucs_model_name, track_name, "vocals.wav")
|
48 |
+
|
49 |
+
|
50 |
+
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None):
|
51 |
if inputs_path is None:
|
52 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
53 |
|
|
|
|
|
54 |
sampling_rate, inputs = wavfile.read(inputs_path)
|
55 |
|
|
|
|
|
56 |
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
57 |
|
58 |
text = out["text"]
|
59 |
|
|
|
|
|
60 |
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)
|
61 |
|
|
|
|
|
|
|
|
|
62 |
transcripts = []
|
63 |
audios = []
|
64 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
65 |
+
for i,chunk in enumerate(chunks):
|
66 |
|
67 |
# TODO: make sure 1D or 2D?
|
68 |
arr = chunk["audio"]
|
|
|
79 |
|
80 |
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
81 |
|
82 |
+
|
83 |
+
dataset.push_to_hub(dataset_name, token=oauth_token.token)
|
|
|
84 |
|
85 |
+
return text
|
|
|
86 |
|
87 |
|
88 |
def _return_yt_html_embed(yt_url):
|
|
|
125 |
raise gr.Error(str(err))
|
126 |
|
127 |
|
128 |
+
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000):
|
|
|
|
|
|
|
|
|
129 |
html_embed_str = _return_yt_html_embed(yt_url)
|
130 |
|
131 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
132 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
|
|
|
|
|
|
133 |
download_yt_audio(yt_url, filepath)
|
134 |
with open(filepath, "rb") as f:
|
135 |
inputs_path = f.read()
|
|
|
137 |
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
138 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
139 |
|
|
|
|
|
140 |
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
141 |
|
142 |
text = out["text"]
|
143 |
|
144 |
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
145 |
|
|
|
|
|
146 |
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
|
147 |
|
|
|
|
|
|
|
148 |
transcripts = []
|
149 |
audios = []
|
150 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
151 |
+
for i,chunk in enumerate(chunks):
|
152 |
|
153 |
# TODO: make sure 1D or 2D?
|
154 |
arr = chunk["audio"]
|
|
|
165 |
|
166 |
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
167 |
|
168 |
+
|
169 |
+
dataset.push_to_hub(dataset_name, token=oauth_token.token)
|
|
|
170 |
|
|
|
171 |
|
172 |
+
return html_embed_str, text
|
173 |
|
174 |
|
175 |
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
|
176 |
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
|
177 |
# return list of dictionnaries (text, audio)
|
178 |
# min duration is in seconds
|
179 |
+
|
180 |
min_duration = int(min_duration * sampling_rate)
|
|
|
181 |
|
182 |
new_chunks = []
|
183 |
while chunks:
|
184 |
current_chunk = chunks.pop(0)
|
|
|
|
|
185 |
begin, end = current_chunk["timestamp"]
|
186 |
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
187 |
|
|
|
193 |
chunk_to_concat = [audio_array[begin:end]]
|
194 |
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
|
195 |
ch = chunks.pop(0)
|
196 |
+
|
197 |
begin, end = ch["timestamp"]
|
198 |
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
199 |
current_dur += end-begin
|
|
|
209 |
"audio": np.concatenate(chunk_to_concat),
|
210 |
})
|
211 |
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
|
|
|
|
|
212 |
|
213 |
return new_chunks
|
214 |
|
215 |
|
216 |
+
|
217 |
+
mf_transcribe = gr.Interface(
|
218 |
+
fn=transcribe,
|
219 |
+
inputs=[
|
220 |
+
gr.Audio(type="filepath"),
|
221 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
222 |
+
gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio"),
|
223 |
+
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"),
|
224 |
+
],
|
225 |
+
outputs="text",
|
226 |
+
theme="huggingface",
|
227 |
+
title="Create your own TTS dataset using your own recordings",
|
228 |
+
description=(
|
229 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
230 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
231 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
232 |
+
),
|
233 |
+
allow_flagging="never",
|
234 |
+
)
|
235 |
+
|
236 |
+
yt_transcribe = gr.Interface(
|
237 |
+
fn=yt_transcribe,
|
238 |
+
inputs=[
|
239 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
240 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
241 |
+
gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio"),
|
242 |
+
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"),
|
243 |
+
],
|
244 |
+
outputs=["html", "text"],
|
245 |
+
theme="huggingface",
|
246 |
+
title="Create your own TTS dataset using Youtube",
|
247 |
+
description=(
|
248 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
249 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
250 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
251 |
+
),
|
252 |
+
allow_flagging="never",
|
253 |
+
)
|
254 |
|
255 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
with gr.Row():
|
257 |
gr.LoginButton().activate()
|
258 |
gr.LogoutButton()
|
259 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Microphone or Audio file", "YouTube"])
|
260 |
+
|
261 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|