Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import yt_dlp as youtube_dl
|
5 |
+
import numpy as np
|
6 |
+
from datasets import Dataset, Audio
|
7 |
+
from scipy.io import wavfile
|
8 |
+
|
9 |
+
from transformers import pipeline
|
10 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
+
|
12 |
+
import tempfile
|
13 |
+
import os
|
14 |
+
import time
|
15 |
+
os.environ["GRADIO_TEMP_DIR"] = "/home/yoach/spaces/tmp"
|
16 |
+
|
17 |
+
|
18 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
19 |
+
BATCH_SIZE = 8
|
20 |
+
FILE_LIMIT_MB = 1000
|
21 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
22 |
+
|
23 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
pipe = pipeline(
|
26 |
+
task="automatic-speech-recognition",
|
27 |
+
model=MODEL_NAME,
|
28 |
+
chunk_length_s=30,
|
29 |
+
device=device,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def transcribe(inputs_path, task, dataset_name, oauth_token: gr.OAuthToken):
|
34 |
+
if inputs_path is None:
|
35 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
36 |
+
|
37 |
+
sampling_rate, inputs = wavfile.read(inputs_path)
|
38 |
+
|
39 |
+
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
40 |
+
|
41 |
+
text = out["text"]
|
42 |
+
|
43 |
+
chunks = naive_postprocess_whisper_chunks(out["chunks"])
|
44 |
+
|
45 |
+
transcripts = []
|
46 |
+
audios = []
|
47 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
48 |
+
for i,chunk in enumerate(chunks):
|
49 |
+
begin, end = chunk["timestamp"]
|
50 |
+
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
51 |
+
# TODO: make sure 1D or 2D?
|
52 |
+
arr = inputs[begin:end]
|
53 |
+
path = os.path.join(tmpdirname, f"{i}.wav")
|
54 |
+
wavfile.write(path, sampling_rate, arr)
|
55 |
+
audios.append(path)
|
56 |
+
transcripts.append(chunk["text"])
|
57 |
+
|
58 |
+
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
59 |
+
|
60 |
+
|
61 |
+
dataset.push_to_hub(dataset_name, token=oauth_token)
|
62 |
+
|
63 |
+
return text
|
64 |
+
|
65 |
+
|
66 |
+
def _return_yt_html_embed(yt_url):
|
67 |
+
video_id = yt_url.split("?v=")[-1]
|
68 |
+
HTML_str = (
|
69 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
70 |
+
" </center>"
|
71 |
+
)
|
72 |
+
return HTML_str
|
73 |
+
|
74 |
+
def download_yt_audio(yt_url, filename):
|
75 |
+
info_loader = youtube_dl.YoutubeDL()
|
76 |
+
|
77 |
+
try:
|
78 |
+
info = info_loader.extract_info(yt_url, download=False)
|
79 |
+
except youtube_dl.utils.DownloadError as err:
|
80 |
+
raise gr.Error(str(err))
|
81 |
+
|
82 |
+
file_length = info["duration_string"]
|
83 |
+
file_h_m_s = file_length.split(":")
|
84 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
85 |
+
|
86 |
+
if len(file_h_m_s) == 1:
|
87 |
+
file_h_m_s.insert(0, 0)
|
88 |
+
if len(file_h_m_s) == 2:
|
89 |
+
file_h_m_s.insert(0, 0)
|
90 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
91 |
+
|
92 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
93 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
94 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
95 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
96 |
+
|
97 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
98 |
+
|
99 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
100 |
+
try:
|
101 |
+
ydl.download([yt_url])
|
102 |
+
except youtube_dl.utils.ExtractorError as err:
|
103 |
+
raise gr.Error(str(err))
|
104 |
+
|
105 |
+
|
106 |
+
def yt_transcribe(yt_url, task, dataset_name, oauth_token: gr.OAuthToken, max_filesize=75.0, dataset_sampling_rate = 24000):
|
107 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
108 |
+
|
109 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
110 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
111 |
+
download_yt_audio(yt_url, filepath)
|
112 |
+
with open(filepath, "rb") as f:
|
113 |
+
inputs_path = f.read()
|
114 |
+
|
115 |
+
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
116 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
117 |
+
|
118 |
+
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
119 |
+
|
120 |
+
text = out["text"]
|
121 |
+
|
122 |
+
chunks = naive_postprocess_whisper_chunks(out["chunks"])
|
123 |
+
|
124 |
+
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
125 |
+
|
126 |
+
transcripts = []
|
127 |
+
audios = []
|
128 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
129 |
+
for i,chunk in enumerate(chunks):
|
130 |
+
begin, end = chunk["timestamp"]
|
131 |
+
begin, end = int(begin*dataset_sampling_rate), int(end*dataset_sampling_rate)
|
132 |
+
# TODO: make sure 1D or 2D?
|
133 |
+
arr = inputs[begin:end]
|
134 |
+
path = os.path.join(tmpdirname, f"{i}.wav")
|
135 |
+
wavfile.write(path, dataset_sampling_rate, arr)
|
136 |
+
audios.append(path)
|
137 |
+
transcripts.append(chunk["text"])
|
138 |
+
|
139 |
+
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio())
|
140 |
+
|
141 |
+
|
142 |
+
dataset.push_to_hub(dataset_name, token=oauth_token)
|
143 |
+
|
144 |
+
|
145 |
+
return html_embed_str, text
|
146 |
+
|
147 |
+
|
148 |
+
def naive_postprocess_whisper_chunks(chunks, stop_chars = ".!:;?", min_duration = 5):
|
149 |
+
new_chunks = []
|
150 |
+
|
151 |
+
while chunks:
|
152 |
+
current_chunk = chunks.pop(0)
|
153 |
+
begin, end = current_chunk["timestamp"]
|
154 |
+
text = current_chunk["text"]
|
155 |
+
|
156 |
+
while chunks and (text[-1] not in stop_chars or (end-begin<min_duration)):
|
157 |
+
ch = chunks.pop(0)
|
158 |
+
end = ch["timestamp"][1]
|
159 |
+
text = "".join([text, ch["text"]])
|
160 |
+
|
161 |
+
new_chunks.append({
|
162 |
+
"text": text.strip(),
|
163 |
+
"timestamp": (begin, end),
|
164 |
+
})
|
165 |
+
print(f"LENGTH CHUNK #{len(new_chunks)}: {end-begin}s")
|
166 |
+
|
167 |
+
return new_chunks
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
demo = gr.Blocks()
|
175 |
+
|
176 |
+
mf_transcribe = gr.Interface(
|
177 |
+
fn=transcribe,
|
178 |
+
inputs=[
|
179 |
+
gr.Audio(type="filepath"),
|
180 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
181 |
+
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"),
|
182 |
+
],
|
183 |
+
outputs="text",
|
184 |
+
theme="huggingface",
|
185 |
+
title="Whisper Large V3: Transcribe Audio",
|
186 |
+
description=(
|
187 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
188 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
189 |
+
" of arbitrary length."
|
190 |
+
),
|
191 |
+
allow_flagging="never",
|
192 |
+
)
|
193 |
+
|
194 |
+
yt_transcribe = gr.Interface(
|
195 |
+
fn=yt_transcribe,
|
196 |
+
inputs=[
|
197 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
198 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
199 |
+
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"),
|
200 |
+
],
|
201 |
+
outputs=["html", "text"],
|
202 |
+
theme="huggingface",
|
203 |
+
title="Whisper Large V3: Transcribe YouTube",
|
204 |
+
description=(
|
205 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
206 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
207 |
+
" arbitrary length."
|
208 |
+
),
|
209 |
+
allow_flagging="never",
|
210 |
+
)
|
211 |
+
|
212 |
+
with demo:
|
213 |
+
with gr.Row():
|
214 |
+
gr.LoginButton()
|
215 |
+
gr.LogoutButton()
|
216 |
+
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Microphone or Audio file", "YouTube"])
|
217 |
+
|
218 |
+
demo.launch(debug=True)
|