CC_and_Distractors / utils /api_utils.py
谢璐璟
.
e9ce3e8
raw
history blame
6.35 kB
import base64
import numpy as np
from typing import Dict
import random
import asyncio
import logging
import os, json
from typing import Any
from aiohttp import ClientSession
from tqdm.asyncio import tqdm_asyncio
import random
from time import sleep
import aiolimiter
import openai
from openai import AsyncOpenAI, OpenAIError
from anthropic import AsyncAnthropic
async def _throttled_openai_chat_completion_acreate(
client: AsyncOpenAI,
model: str,
messages,
temperature: float,
max_tokens: int,
top_p: float,
limiter: aiolimiter.AsyncLimiter,
json_format: bool = False,
n: int = 1,
):
async with limiter:
for _ in range(10):
try:
if json_format:
return await client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
n=n,
response_format={"type": "json_object"},
)
else:
return await client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
n=n,
)
except openai.RateLimitError as e:
print("Rate limit exceeded, retrying...")
sleep(random.randint(10, 20)) # 增加重试等待时间
except openai.BadRequestError as e:
print(e)
return None
except OpenAIError as e:
print(e)
sleep(random.randint(5, 10))
return None
async def generate_from_openai_chat_completion(
client,
messages,
engine_name: str,
temperature: float = 1.0,
max_tokens: int = 512,
top_p: float = 1.0,
requests_per_minute: int = 100,
json_format: bool = False,
n: int = 1,
):
# https://chat.openai.com/share/09154613-5f66-4c74-828b-7bd9384c2168
delay = 60.0 / requests_per_minute
limiter = aiolimiter.AsyncLimiter(1, delay)
async_responses = [
_throttled_openai_chat_completion_acreate(
client,
model=engine_name,
messages=message,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
limiter=limiter,
json_format=json_format,
n=n,
)
for message in messages
]
responses = await tqdm_asyncio.gather(*async_responses)
empty_dict = {
"question": "",
"options": {
"A": "",
"B": "",
"C": "",
"D": "",
},
"distractors": {
"E": "",
"F": "",
"G": "",
},
"correct_answer": ""
}
empty_str = ""
outputs = []
for response in responses:
if n == 1:
if json_format:
if response and response.choices[0] and response.choices[0].message and response.choices[0].message.content:
outputs.append(json.loads(response.choices[0].message.content))
else:
outputs.append(empty_dict)
else:
if response and response.choices[0] and response.choices[0].message and response.choices[0].message.content:
outputs.append(response.choices[0].message.content)
else:
outputs.append(empty_str)
else:
if json_format:
outputs.append([
json.loads(response.choices[i].message.content) if response and response.choices[i].message.content else empty_dict
for i in range(n)
])
else:
outputs.append([
response.choices[i].message.content if response and response.choices[i].message.content else empty_str
for i in range(n)
])
return outputs
async def _throttled_claude_chat_completion_acreate(
client: AsyncAnthropic,
model: str,
messages,
temperature: float,
max_tokens: int,
top_p: float,
limiter: aiolimiter.AsyncLimiter,
):
async with limiter:
try:
return await client.messages.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
)
except:
return None
async def generate_from_claude_chat_completion(
client,
messages,
engine_name: str,
temperature: float = 1.0,
max_tokens: int = 512,
top_p: float = 1.0,
requests_per_minute: int = 100,
n: int = 1,
):
# https://chat.openai.com/share/09154613-5f66-4c74-828b-7bd9384c2168
delay = 60.0 / requests_per_minute
limiter = aiolimiter.AsyncLimiter(1, delay)
n_messages = []
for message in messages:
for _ in range(n):
n_messages.append(message)
async_responses = [
_throttled_claude_chat_completion_acreate(
client,
model=engine_name,
messages=message,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
limiter=limiter,
)
for message in n_messages
]
responses = await tqdm_asyncio.gather(*async_responses)
outputs = []
if n == 1:
for response in responses:
if response and response.content and response.content[0] and response.content[0].text:
outputs.append(response.content[0].text)
else:
outputs.append("")
else:
idx = 0
for response in responses:
if idx % n == 0:
outputs.append([])
idx += 1
if response and response.content and response.content[0] and response.content[0].text:
outputs[-1].append(response.content[0].text)
else:
outputs[-1].append("")
return outputs