Spaces:
Build error
Build error
Upload 2 files
Browse files- .gitattributes +1 -0
- cleaned_processed_data.csv +3 -0
- combined.ipynb +378 -140
.gitattributes
CHANGED
@@ -36,3 +36,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
36 |
combined_output.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
combined_texts.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
36 |
combined_output.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
combined_texts.csv filter=lfs diff=lfs merge=lfs -text
|
38 |
processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
39 |
+
cleaned_processed_data.csv filter=lfs diff=lfs merge=lfs -text
|
cleaned_processed_data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0827f1e2337aaf3e75ccbed508fd13dcb2d26612a1a55a8922d25e77fc54dd85
|
3 |
+
size 391939173
|
combined.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "code",
|
12 |
-
"execution_count":
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
@@ -40,7 +40,7 @@
|
|
40 |
},
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
-
"execution_count":
|
44 |
"metadata": {},
|
45 |
"outputs": [],
|
46 |
"source": [
|
@@ -138,15 +138,15 @@
|
|
138 |
]
|
139 |
},
|
140 |
{
|
141 |
-
"cell_type": "
|
142 |
-
"execution_count": null,
|
143 |
"metadata": {},
|
144 |
-
"
|
145 |
-
|
|
|
146 |
},
|
147 |
{
|
148 |
"cell_type": "code",
|
149 |
-
"execution_count":
|
150 |
"metadata": {},
|
151 |
"outputs": [],
|
152 |
"source": [
|
@@ -204,13 +204,6 @@
|
|
204 |
"save_to_csv(truncated_texts, output_file)\n"
|
205 |
]
|
206 |
},
|
207 |
-
{
|
208 |
-
"cell_type": "code",
|
209 |
-
"execution_count": null,
|
210 |
-
"metadata": {},
|
211 |
-
"outputs": [],
|
212 |
-
"source": []
|
213 |
-
},
|
214 |
{
|
215 |
"cell_type": "markdown",
|
216 |
"metadata": {},
|
@@ -220,79 +213,37 @@
|
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
-
"execution_count":
|
224 |
"metadata": {},
|
225 |
"outputs": [
|
226 |
{
|
227 |
-
"name": "
|
228 |
"output_type": "stream",
|
229 |
"text": [
|
230 |
-
"
|
231 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
]
|
233 |
},
|
234 |
-
{
|
235 |
-
"ename": "KeyboardInterrupt",
|
236 |
-
"evalue": "",
|
237 |
-
"output_type": "error",
|
238 |
-
"traceback": [
|
239 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
240 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
241 |
-
"Cell \u001b[1;32mIn[11], line 33\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords_per_document, top_tfidf_scores_per_document\n\u001b[0;32m 32\u001b[0m \u001b[38;5;66;03m# Anahtar kelimeleri çıkar ve sonuçları al\u001b[39;00m\n\u001b[1;32m---> 33\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[43mextract_keywords_tfidf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcombined\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop_words_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_n\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 36\u001b[0m \u001b[38;5;66;03m# Sonuçları görüntüleme\u001b[39;00m\n\u001b[0;32m 37\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, (keywords, scores) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mzip\u001b[39m(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
242 |
-
"Cell \u001b[1;32mIn[11], line 21\u001b[0m, in \u001b[0;36mextract_keywords_tfidf\u001b[1;34m(combined, stop_words_list, top_n)\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m row \u001b[38;5;129;01min\u001b[39;00m X:\n\u001b[0;32m 20\u001b[0m tfidf_scores \u001b[38;5;241m=\u001b[39m row\u001b[38;5;241m.\u001b[39mtoarray()\u001b[38;5;241m.\u001b[39mflatten() \u001b[38;5;66;03m#değişkenleri düz bir değişken haline getirme\u001b[39;00m\n\u001b[1;32m---> 21\u001b[0m top_indices \u001b[38;5;241m=\u001b[39m \u001b[43mtfidf_scores\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margsort\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;241m-\u001b[39mtop_n:][::\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m] \u001b[38;5;66;03m# En yüksek n skoru bul\u001b[39;00m\n\u001b[0;32m 23\u001b[0m \u001b[38;5;66;03m#en yüksek skorlu kelimleri ve skorları bul\u001b[39;00m\n\u001b[0;32m 24\u001b[0m top_keywords \u001b[38;5;241m=\u001b[39m [feature_names[i] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m top_indices]\n",
|
243 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
244 |
-
]
|
245 |
-
}
|
246 |
-
],
|
247 |
-
"source": [
|
248 |
-
"import csv\n",
|
249 |
-
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
250 |
-
"from joblib import Parallel, delayed\n",
|
251 |
-
"import pandas as pd\n",
|
252 |
-
"\n",
|
253 |
-
"df=pd.read_csv('combined_texts.csv')\n",
|
254 |
-
"combined= df['combined'].tolist()\n",
|
255 |
-
"def extract_keywords_tfidf(combined, stop_words_list,top_n=10):\n",
|
256 |
-
" \"\"\"TF-IDF ile anahtar kelimeleri çıkarır, stop words listesi ile birlikte kullanır.\"\"\"\n",
|
257 |
-
" vectorizer = TfidfVectorizer(stop_words=stop_words_list)\n",
|
258 |
-
" X = vectorizer.fit_transform(combined) #bunu csv den oku \n",
|
259 |
-
" feature_names = vectorizer.get_feature_names_out() #her kelimenin tf-ıdf vektöründeki karşılığını tutar \n",
|
260 |
-
" #sorted_keywords = [feature_names[i] for i in X.sum(axis=0).argsort()[0, ::-1]]\n",
|
261 |
-
" \n",
|
262 |
-
" top_keywords_per_document = [] #her döküman için en iyi keywordsleri alır\n",
|
263 |
-
" top_tfidf_scores_per_document = [] #tf-ıdf değeri en yüksek olan dökümanlar\n",
|
264 |
-
"\n",
|
265 |
-
" # Her dökümanı işleme\n",
|
266 |
-
" for row in X:\n",
|
267 |
-
" tfidf_scores = row.toarray().flatten() #değişkenleri düz bir değişken haline getirme\n",
|
268 |
-
" top_indices = tfidf_scores.argsort()[-top_n:][::-1] # En yüksek n skoru bul\n",
|
269 |
-
" \n",
|
270 |
-
" #en yüksek skorlu kelimleri ve skorları bul\n",
|
271 |
-
" top_keywords = [feature_names[i] for i in top_indices]\n",
|
272 |
-
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
273 |
-
" \n",
|
274 |
-
" top_keywords_per_document.append(top_keywords)\n",
|
275 |
-
" top_tfidf_scores_per_document.append(top_tfidf_scores)\n",
|
276 |
-
" \n",
|
277 |
-
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
278 |
-
"\n",
|
279 |
-
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
280 |
-
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined, stop_words_list, top_n=10)\n",
|
281 |
-
" \n",
|
282 |
-
"\n",
|
283 |
-
"# Sonuçları görüntüleme\n",
|
284 |
-
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
285 |
-
" print(f\"Döküman {i+1}:\")\n",
|
286 |
-
" for keyword, score in zip(keywords, scores):\n",
|
287 |
-
" print(f\"{keyword}: {score:.4f}\")\n",
|
288 |
-
" print(\"\\n\")\n"
|
289 |
-
]
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"cell_type": "code",
|
293 |
-
"execution_count": 5,
|
294 |
-
"metadata": {},
|
295 |
-
"outputs": [
|
296 |
{
|
297 |
"name": "stderr",
|
298 |
"output_type": "stream",
|
@@ -300,21 +251,6 @@
|
|
300 |
"c:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\sklearn\\feature_extraction\\text.py:406: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['leh'] not in stop_words.\n",
|
301 |
" warnings.warn(\n"
|
302 |
]
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"ename": "KeyboardInterrupt",
|
306 |
-
"evalue": "",
|
307 |
-
"output_type": "error",
|
308 |
-
"traceback": [
|
309 |
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
310 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
311 |
-
"Cell \u001b[1;32mIn[5], line 53\u001b[0m\n\u001b[0;32m 50\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords_per_document, top_tfidf_scores_per_document\n\u001b[0;32m 52\u001b[0m \u001b[38;5;66;03m# Anahtar kelimeleri çıkar ve sonuçları al\u001b[39;00m\n\u001b[1;32m---> 53\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[43mextract_keywords_tfidf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcombined\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop_words_list\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_n\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 55\u001b[0m \u001b[38;5;66;03m# Sonuçları görüntüleme\u001b[39;00m\n\u001b[0;32m 56\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, (keywords, scores) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mzip\u001b[39m(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
312 |
-
"Cell \u001b[1;32mIn[5], line 45\u001b[0m, in \u001b[0;36mextract_keywords_tfidf\u001b[1;34m(combined, stop_words_list, top_n, n_jobs)\u001b[0m\n\u001b[0;32m 42\u001b[0m top_tfidf_scores \u001b[38;5;241m=\u001b[39m [tfidf_scores[i] \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m top_indices]\n\u001b[0;32m 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m top_keywords, top_tfidf_scores\n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mParallel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_jobs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprocess_row\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrow\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrow\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 47\u001b[0m \u001b[38;5;66;03m# Sonuçları listelere ayırma\u001b[39;00m\n\u001b[0;32m 48\u001b[0m top_keywords_per_document, top_tfidf_scores_per_document \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mzip\u001b[39m(\u001b[38;5;241m*\u001b[39mresults)\n",
|
313 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:2007\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[1;34m(self, iterable)\u001b[0m\n\u001b[0;32m 2001\u001b[0m \u001b[38;5;66;03m# The first item from the output is blank, but it makes the interpreter\u001b[39;00m\n\u001b[0;32m 2002\u001b[0m \u001b[38;5;66;03m# progress until it enters the Try/Except block of the generator and\u001b[39;00m\n\u001b[0;32m 2003\u001b[0m \u001b[38;5;66;03m# reaches the first `yield` statement. This starts the asynchronous\u001b[39;00m\n\u001b[0;32m 2004\u001b[0m \u001b[38;5;66;03m# dispatch of the tasks to the workers.\u001b[39;00m\n\u001b[0;32m 2005\u001b[0m \u001b[38;5;28mnext\u001b[39m(output)\n\u001b[1;32m-> 2007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m output \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreturn_generator \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n",
|
314 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:1650\u001b[0m, in \u001b[0;36mParallel._get_outputs\u001b[1;34m(self, iterator, pre_dispatch)\u001b[0m\n\u001b[0;32m 1647\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[0;32m 1649\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backend\u001b[38;5;241m.\u001b[39mretrieval_context():\n\u001b[1;32m-> 1650\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_retrieve()\n\u001b[0;32m 1652\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mGeneratorExit\u001b[39;00m:\n\u001b[0;32m 1653\u001b[0m \u001b[38;5;66;03m# The generator has been garbage collected before being fully\u001b[39;00m\n\u001b[0;32m 1654\u001b[0m \u001b[38;5;66;03m# consumed. This aborts the remaining tasks if possible and warn\u001b[39;00m\n\u001b[0;32m 1655\u001b[0m \u001b[38;5;66;03m# the user if necessary.\u001b[39;00m\n\u001b[0;32m 1656\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
|
315 |
-
"File \u001b[1;32mc:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\joblib\\parallel.py:1762\u001b[0m, in \u001b[0;36mParallel._retrieve\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1757\u001b[0m \u001b[38;5;66;03m# If the next job is not ready for retrieval yet, we just wait for\u001b[39;00m\n\u001b[0;32m 1758\u001b[0m \u001b[38;5;66;03m# async callbacks to progress.\u001b[39;00m\n\u001b[0;32m 1759\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ((\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m\n\u001b[0;32m 1760\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mget_status(\n\u001b[0;32m 1761\u001b[0m timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtimeout) \u001b[38;5;241m==\u001b[39m TASK_PENDING)):\n\u001b[1;32m-> 1762\u001b[0m \u001b[43mtime\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msleep\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0.01\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1763\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[0;32m 1765\u001b[0m \u001b[38;5;66;03m# We need to be careful: the job list can be filling up as\u001b[39;00m\n\u001b[0;32m 1766\u001b[0m \u001b[38;5;66;03m# we empty it and Python list are not thread-safe by\u001b[39;00m\n\u001b[0;32m 1767\u001b[0m \u001b[38;5;66;03m# default hence the use of the lock\u001b[39;00m\n",
|
316 |
-
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
317 |
-
]
|
318 |
}
|
319 |
],
|
320 |
"source": [
|
@@ -322,10 +258,13 @@
|
|
322 |
"import pandas as pd\n",
|
323 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
324 |
"from joblib import Parallel, delayed\n",
|
|
|
|
|
|
|
325 |
"\n",
|
326 |
"\n",
|
327 |
"# CSV dosyasını okuma\n",
|
328 |
-
"df = pd.read_csv('
|
329 |
"combined = df['combined'].tolist()\n",
|
330 |
"\n",
|
331 |
"\n",
|
@@ -371,18 +310,18 @@
|
|
371 |
"\n",
|
372 |
"def clean_data(file_path):\n",
|
373 |
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
374 |
-
" with open(file_path, 'r') as file:\n",
|
375 |
" raw_text = file.read()\n",
|
376 |
" \n",
|
377 |
" data = parse_text(raw_text)\n",
|
378 |
" \n",
|
379 |
" # Veri çerçevesi oluştur\n",
|
380 |
-
" df = pd.DataFrame(data
|
381 |
" \n",
|
382 |
" return df\n",
|
383 |
"\n",
|
384 |
"# CSV dosyasını temizleyip düzenli bir DataFrame oluştur\n",
|
385 |
-
"cleaned_df = clean_data('
|
386 |
"\n",
|
387 |
"# Düzenlenmiş veriyi kontrol et\n",
|
388 |
"print(cleaned_df.head())\n",
|
@@ -405,7 +344,7 @@
|
|
405 |
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
406 |
" return top_keywords, top_tfidf_scores\n",
|
407 |
"\n",
|
408 |
-
" results = Parallel(n_jobs=n_jobs)(delayed(process_row)(row) for row in X)\n",
|
409 |
"\n",
|
410 |
" # Sonuçları listelere ayırma\n",
|
411 |
" top_keywords_per_document, top_tfidf_scores_per_document = zip(*results)\n",
|
@@ -413,14 +352,81 @@
|
|
413 |
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
414 |
"\n",
|
415 |
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
416 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
"\n",
|
|
|
|
|
418 |
"# Sonuçları görüntüleme\n",
|
419 |
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
420 |
" print(f\"Döküman {i+1}:\")\n",
|
421 |
" for keyword, score in zip(keywords, scores):\n",
|
422 |
" print(f\"{keyword}: {score:.4f}\")\n",
|
423 |
-
" print(\"\\n\")\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
]
|
425 |
},
|
426 |
{
|
@@ -437,23 +443,18 @@
|
|
437 |
"keyword_embeddings = model.encode(top_keywords_per_document)\n"
|
438 |
]
|
439 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
{
|
441 |
"cell_type": "code",
|
442 |
-
"execution_count":
|
443 |
"metadata": {},
|
444 |
-
"outputs": [
|
445 |
-
{
|
446 |
-
"name": "stdout",
|
447 |
-
"output_type": "stream",
|
448 |
-
"text": [
|
449 |
-
"Keyword: bir, Similarity: 0.26726124191242445\n",
|
450 |
-
"Keyword: anahtar, Similarity: 0.26726124191242445\n",
|
451 |
-
"Keyword: kelimeleri, Similarity: 0.26726124191242445\n",
|
452 |
-
"Keyword: test, Similarity: 0.26726124191242445\n",
|
453 |
-
"Keyword: başka, Similarity: 0.0\n"
|
454 |
-
]
|
455 |
-
}
|
456 |
-
],
|
457 |
"source": [
|
458 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
459 |
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
@@ -481,6 +482,8 @@
|
|
481 |
"\n",
|
482 |
"# Örnek metin ve anahtar kelimeler\n",
|
483 |
"#combined verileri \n",
|
|
|
|
|
484 |
"text = \"Bu bir örnek metindir ve bu metin üzerinde anahtar kelimeleri test ediyoruz.\"\n",
|
485 |
"keywords = [\"başka\", \"bir\", \"anahtar\", \"kelimeleri\", \"test\"] #bu keywordsler tf-değerinden alınarak arraylere çevrilmeli \n",
|
486 |
" \n",
|
@@ -497,20 +500,79 @@
|
|
497 |
},
|
498 |
{
|
499 |
"cell_type": "code",
|
500 |
-
"execution_count":
|
501 |
"metadata": {},
|
502 |
-
"outputs": [
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
"source": [
|
515 |
"\n",
|
516 |
"# BERT Tokenizer ve Model'i yükleyin\n",
|
@@ -575,17 +637,9 @@
|
|
575 |
},
|
576 |
{
|
577 |
"cell_type": "code",
|
578 |
-
"execution_count":
|
579 |
"metadata": {},
|
580 |
-
"outputs": [
|
581 |
-
{
|
582 |
-
"name": "stdout",
|
583 |
-
"output_type": "stream",
|
584 |
-
"text": [
|
585 |
-
"combined metinler 'combined_texts.csv' dosyasına başarıyla yazıld��.\n"
|
586 |
-
]
|
587 |
-
}
|
588 |
-
],
|
589 |
"source": [
|
590 |
"#mongodb üzerinden combined_textleri çek\n",
|
591 |
"import csv\n",
|
@@ -824,13 +878,197 @@
|
|
824 |
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")"
|
825 |
]
|
826 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
827 |
{
|
828 |
"cell_type": "code",
|
829 |
"execution_count": null,
|
830 |
"metadata": {},
|
831 |
"outputs": [],
|
832 |
"source": [
|
833 |
-
" "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
834 |
]
|
835 |
}
|
836 |
],
|
|
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
"metadata": {},
|
14 |
"outputs": [],
|
15 |
"source": [
|
|
|
40 |
},
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
+
"execution_count": 2,
|
44 |
"metadata": {},
|
45 |
"outputs": [],
|
46 |
"source": [
|
|
|
138 |
]
|
139 |
},
|
140 |
{
|
141 |
+
"cell_type": "markdown",
|
|
|
142 |
"metadata": {},
|
143 |
+
"source": [
|
144 |
+
"Metinleri Kısaltma Fonksiyonu (processed_data kaydetme)"
|
145 |
+
]
|
146 |
},
|
147 |
{
|
148 |
"cell_type": "code",
|
149 |
+
"execution_count": null,
|
150 |
"metadata": {},
|
151 |
"outputs": [],
|
152 |
"source": [
|
|
|
204 |
"save_to_csv(truncated_texts, output_file)\n"
|
205 |
]
|
206 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
{
|
208 |
"cell_type": "markdown",
|
209 |
"metadata": {},
|
|
|
213 |
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
+
"execution_count": 9,
|
217 |
"metadata": {},
|
218 |
"outputs": [
|
219 |
{
|
220 |
+
"name": "stdout",
|
221 |
"output_type": "stream",
|
222 |
"text": [
|
223 |
+
" 0 1 2 3 4 5 \\\n",
|
224 |
+
"0 1992 Hitachi Football League 6 0 \n",
|
225 |
+
"1 6 0 None None \n",
|
226 |
+
"2 1993 rowspan=\"\"3\"\" Kashiwa Reysol rowspan=\"\"2\"\" Football League \n",
|
227 |
+
"3 1994 0 0 0 0 \n",
|
228 |
+
"4 1995 J1 League 17 1 2 \n",
|
229 |
+
"\n",
|
230 |
+
" 6 7 8 9 ... 204 205 206 207 \\\n",
|
231 |
+
"0 colspan=\"\"2\"\" None None None ... None None None None \n",
|
232 |
+
"1 None None None None ... None None None None \n",
|
233 |
+
"2 12 5 1 0 ... None None None None \n",
|
234 |
+
"3 0 0 0 0 ... None None None None \n",
|
235 |
+
"4 0 colspan=\"\"2\"\" None None ... None None None None \n",
|
236 |
+
"\n",
|
237 |
+
" 208 209 210 211 212 213 \n",
|
238 |
+
"0 None None None None None None \n",
|
239 |
+
"1 None None None None None None \n",
|
240 |
+
"2 None None None None None None \n",
|
241 |
+
"3 None None None None None None \n",
|
242 |
+
"4 None None None None None None \n",
|
243 |
+
"\n",
|
244 |
+
"[5 rows x 214 columns]\n"
|
245 |
]
|
246 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
{
|
248 |
"name": "stderr",
|
249 |
"output_type": "stream",
|
|
|
251 |
"c:\\gitProjects\\yeni\\.venv\\lib\\site-packages\\sklearn\\feature_extraction\\text.py:406: UserWarning: Your stop_words may be inconsistent with your preprocessing. Tokenizing the stop words generated tokens ['leh'] not in stop_words.\n",
|
252 |
" warnings.warn(\n"
|
253 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
}
|
255 |
],
|
256 |
"source": [
|
|
|
258 |
"import pandas as pd\n",
|
259 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
260 |
"from joblib import Parallel, delayed\n",
|
261 |
+
"from tqdm import tqdm\n",
|
262 |
+
"import csv\n",
|
263 |
+
"\n",
|
264 |
"\n",
|
265 |
"\n",
|
266 |
"# CSV dosyasını okuma\n",
|
267 |
+
"df = pd.read_csv('processed_data.csv')\n",
|
268 |
"combined = df['combined'].tolist()\n",
|
269 |
"\n",
|
270 |
"\n",
|
|
|
310 |
"\n",
|
311 |
"def clean_data(file_path):\n",
|
312 |
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
313 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
314 |
" raw_text = file.read()\n",
|
315 |
" \n",
|
316 |
" data = parse_text(raw_text)\n",
|
317 |
" \n",
|
318 |
" # Veri çerçevesi oluştur\n",
|
319 |
+
" df = pd.DataFrame(data)\n",
|
320 |
" \n",
|
321 |
" return df\n",
|
322 |
"\n",
|
323 |
"# CSV dosyasını temizleyip düzenli bir DataFrame oluştur\n",
|
324 |
+
"cleaned_df = clean_data('processed_data.csv')\n",
|
325 |
"\n",
|
326 |
"# Düzenlenmiş veriyi kontrol et\n",
|
327 |
"print(cleaned_df.head())\n",
|
|
|
344 |
" top_tfidf_scores = [tfidf_scores[i] for i in top_indices]\n",
|
345 |
" return top_keywords, top_tfidf_scores\n",
|
346 |
"\n",
|
347 |
+
" results = Parallel(n_jobs=n_jobs)(delayed(process_row)(row) for row in tqdm(X))\n",
|
348 |
"\n",
|
349 |
" # Sonuçları listelere ayırma\n",
|
350 |
" top_keywords_per_document, top_tfidf_scores_per_document = zip(*results)\n",
|
|
|
352 |
" return top_keywords_per_document, top_tfidf_scores_per_document\n",
|
353 |
"\n",
|
354 |
"# Anahtar kelimeleri çıkar ve sonuçları al\n",
|
355 |
+
"# İlk 100 dökümanı işleyin\n",
|
356 |
+
"combined_sample = combined[:400000]\n",
|
357 |
+
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined_sample, stop_words_list, top_n=10, n_jobs=-1)\n",
|
358 |
+
"#n__jobs ın 2 olması aynı anda iki iş parçacığı yani iki işlem yanı anda yürütülür \n",
|
359 |
+
"#n__jobs ın -1 olması maksimum işlemci sayısının kullanılmasıdır.\n",
|
360 |
+
"\n",
|
361 |
+
"#Sonuçları CSV dosyasına kaydetme\n",
|
362 |
+
"with open('keywords_with_scores.csv', mode='w', newline='', encoding='utf-8') as file:\n",
|
363 |
+
" writer = csv.writer(file)\n",
|
364 |
+
" # Başlık satırını yazma\n",
|
365 |
+
" writer.writerow(['Document_Index'] + [f'Keyword_{i+1}' for i in range(10)] + [f'Score_{i+1}' for i in range(10)])\n",
|
366 |
+
" \n",
|
367 |
+
" # Her döküman için anahtar kelimeler ve skorları yazma\n",
|
368 |
+
" for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
369 |
+
" row = [i+1] + keywords + [f\"{score:.4f}\" for score in scores]\n",
|
370 |
+
" writer.writerow(row)\n",
|
371 |
"\n",
|
372 |
+
"print(\"Sonuçlar 'keywords_with_scores.csv' dosyasına kaydedildi.\")\n",
|
373 |
+
"\"\"\"\n",
|
374 |
"# Sonuçları görüntüleme\n",
|
375 |
"for i, (keywords, scores) in enumerate(zip(top_keywords_per_document, top_tfidf_scores_per_document)):\n",
|
376 |
" print(f\"Döküman {i+1}:\")\n",
|
377 |
" for keyword, score in zip(keywords, scores):\n",
|
378 |
" print(f\"{keyword}: {score:.4f}\")\n",
|
379 |
+
" print(\"\\n\")\n",
|
380 |
+
"\"\"\""
|
381 |
+
]
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "markdown",
|
385 |
+
"metadata": {},
|
386 |
+
"source": [
|
387 |
+
"Buradaki keywords ve skorlar yukarıda çekildi."
|
388 |
+
]
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"cell_type": "code",
|
392 |
+
"execution_count": null,
|
393 |
+
"metadata": {},
|
394 |
+
"outputs": [],
|
395 |
+
"source": [
|
396 |
+
"import pandas as pd\n",
|
397 |
+
"import csv\n",
|
398 |
+
"\n",
|
399 |
+
"# Anahtar kelimeleri ve TF-IDF skorlarını çekme\n",
|
400 |
+
"top_keywords_per_document, top_tfidf_scores_per_document = extract_keywords_tfidf(combined, stop_words_list, top_n=10, n_jobs=-1)\n",
|
401 |
+
"\n",
|
402 |
+
"# Sonuçları tablo şeklinde hazırlama\n",
|
403 |
+
"results_top = []\n",
|
404 |
+
"for keywords, scores in zip(top_keywords_per_document, top_tfidf_scores_per_document):\n",
|
405 |
+
" row = {}\n",
|
406 |
+
" for i, (keyword, score) in enumerate(zip(keywords, scores)):\n",
|
407 |
+
" row[f'Keyword_{i+1}'] = keyword\n",
|
408 |
+
" row[f'Score_{i+1}'] = score\n",
|
409 |
+
" results_top.append(row)\n",
|
410 |
+
"\n",
|
411 |
+
"# Sonuçları DataFrame'e dönüştürme\n",
|
412 |
+
"df = pd.DataFrame(results_top)\n",
|
413 |
+
"\n",
|
414 |
+
"# Sonuçları CSV'ye kaydetme\n",
|
415 |
+
"df.to_csv('keywords_with_scores.csv', index=False, encoding='utf-8')\n",
|
416 |
+
"\n",
|
417 |
+
"chunksize = 1000 # Küçük bir parça boyutu belirleyin\n",
|
418 |
+
"for i in range(0, len(df), chunksize):\n",
|
419 |
+
" df.iloc[i:i+chunksize].to_csv('keywords_with_scores.csv', mode='a', header=(i==0), index=False, encoding='utf-8')\n",
|
420 |
+
"\n",
|
421 |
+
"# Sonuçları terminalde görüntüleme\n",
|
422 |
+
"print(df.head())\n"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"cell_type": "markdown",
|
427 |
+
"metadata": {},
|
428 |
+
"source": [
|
429 |
+
"Encoding yapmak için"
|
430 |
]
|
431 |
},
|
432 |
{
|
|
|
443 |
"keyword_embeddings = model.encode(top_keywords_per_document)\n"
|
444 |
]
|
445 |
},
|
446 |
+
{
|
447 |
+
"cell_type": "markdown",
|
448 |
+
"metadata": {},
|
449 |
+
"source": [
|
450 |
+
"Text ve keywords similarity denemesi"
|
451 |
+
]
|
452 |
+
},
|
453 |
{
|
454 |
"cell_type": "code",
|
455 |
+
"execution_count": null,
|
456 |
"metadata": {},
|
457 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
"source": [
|
459 |
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
460 |
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
|
|
482 |
"\n",
|
483 |
"# Örnek metin ve anahtar kelimeler\n",
|
484 |
"#combined verileri \n",
|
485 |
+
"\n",
|
486 |
+
"\n",
|
487 |
"text = \"Bu bir örnek metindir ve bu metin üzerinde anahtar kelimeleri test ediyoruz.\"\n",
|
488 |
"keywords = [\"başka\", \"bir\", \"anahtar\", \"kelimeleri\", \"test\"] #bu keywordsler tf-değerinden alınarak arraylere çevrilmeli \n",
|
489 |
" \n",
|
|
|
500 |
},
|
501 |
{
|
502 |
"cell_type": "code",
|
503 |
+
"execution_count": null,
|
504 |
"metadata": {},
|
505 |
+
"outputs": [],
|
506 |
+
"source": [
|
507 |
+
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
508 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
509 |
+
"# Örnek metin ve anahtar kelimeler\n",
|
510 |
+
"#combined verileri \n",
|
511 |
+
"def get_text(file_path='processed_data.csv'):\n",
|
512 |
+
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
513 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
514 |
+
" raw_text = file.read()\n",
|
515 |
+
" \n",
|
516 |
+
" text = parse_text(raw_text)\n",
|
517 |
+
" \n",
|
518 |
+
" # Veri çerçevesi oluştur\n",
|
519 |
+
" df_text = pd.DataFrame(text)\n",
|
520 |
+
" \n",
|
521 |
+
" return df_text\n",
|
522 |
+
"\n",
|
523 |
+
"def get_keywords(file_path='keywords_with_scores.csv'):\n",
|
524 |
+
" \"\"\"CSV dosyasını okur ve veriyi düzenler.\"\"\"\n",
|
525 |
+
" with open(file_path, 'r',encoding='utf-8') as file:\n",
|
526 |
+
" raw_text = file.read()\n",
|
527 |
+
" \n",
|
528 |
+
" keywords = parse_text(raw_text)\n",
|
529 |
+
" \n",
|
530 |
+
" # Veri çerçevesi oluştur\n",
|
531 |
+
" df_keyword = pd.DataFrame(keywords)\n",
|
532 |
+
" \n",
|
533 |
+
" return df_keyword\n",
|
534 |
+
"\n",
|
535 |
+
"\n",
|
536 |
+
"def calculate_keyword_similarity(text, keywords):\n",
|
537 |
+
" # TF-IDF matrisini oluştur\n",
|
538 |
+
" tfidf_vectorizer = TfidfVectorizer()\n",
|
539 |
+
"\n",
|
540 |
+
" #texti ve anahtar kelimeleri tf-ıdf vektörlerine dönüştür\n",
|
541 |
+
" text_tfidf = tfidf_vectorizer.fit_transform(text) #burayı combined sütunundan almalıyım\n",
|
542 |
+
" #benzerlik hesaplama \n",
|
543 |
+
" similarity_array = []\n",
|
544 |
+
" for keyword in keywords:\n",
|
545 |
+
" # Her bir anahtar kelimeyi TF-IDF vektörüne dönüştür\n",
|
546 |
+
" keyword_tfidf = tfidf_vectorizer.transform([keyword]) #keywordleri teker teker alma fonksiyonu\n",
|
547 |
+
" \n",
|
548 |
+
" # Cosine similarity ile benzerlik hesapla\n",
|
549 |
+
" similarity = cosine_similarity(text_tfidf, keyword_tfidf)[0][0]\n",
|
550 |
+
" \n",
|
551 |
+
" # Anahtar kelime ve benzerlik skorunu kaydet\n",
|
552 |
+
" similarity_array.append((keyword, similarity))\n",
|
553 |
+
" \n",
|
554 |
+
" return similarity_array\n",
|
555 |
+
" \n",
|
556 |
+
"\n",
|
557 |
+
"\n",
|
558 |
+
"\n",
|
559 |
+
" \n",
|
560 |
+
"# Uygunluk skorunu hesapla\n",
|
561 |
+
"similarity_results = calculate_keyword_similarity(text, keywords)\n",
|
562 |
+
"top_5_keywords = sorted(similarity_results, key=lambda x: x[1], reverse=True)[:5]\n",
|
563 |
+
"# Her bir anahtar kelimenin uyumluluk skorunu yazdır\n",
|
564 |
+
"\n",
|
565 |
+
"for keyword, similarity in top_5_keywords:\n",
|
566 |
+
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")\n",
|
567 |
+
" #print(f\"Keyword: '{keyword}' - Relevance score: {score:.4f}\")\n",
|
568 |
+
"\n"
|
569 |
+
]
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "code",
|
573 |
+
"execution_count": null,
|
574 |
+
"metadata": {},
|
575 |
+
"outputs": [],
|
576 |
"source": [
|
577 |
"\n",
|
578 |
"# BERT Tokenizer ve Model'i yükleyin\n",
|
|
|
637 |
},
|
638 |
{
|
639 |
"cell_type": "code",
|
640 |
+
"execution_count": null,
|
641 |
"metadata": {},
|
642 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
"source": [
|
644 |
"#mongodb üzerinden combined_textleri çek\n",
|
645 |
"import csv\n",
|
|
|
878 |
" print(f\"Keyword: {keyword}, Similarity: {similarity}\")"
|
879 |
]
|
880 |
},
|
881 |
+
{
|
882 |
+
"cell_type": "markdown",
|
883 |
+
"metadata": {},
|
884 |
+
"source": [
|
885 |
+
"Title değerini bir dataframe' e dönüştürür."
|
886 |
+
]
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"execution_count": 4,
|
891 |
+
"metadata": {},
|
892 |
+
"outputs": [
|
893 |
+
{
|
894 |
+
"name": "stdout",
|
895 |
+
"output_type": "stream",
|
896 |
+
"text": [
|
897 |
+
"metin başlıkları 'titles_texts.csv' dosyasına başarıyla yazıldı.\n",
|
898 |
+
" title\n",
|
899 |
+
"0 Pşıqo Ahecaqo\n",
|
900 |
+
"1 Craterolophinae\n",
|
901 |
+
"2 Notocrabro\n",
|
902 |
+
"3 Ibrahim Sissoko\n",
|
903 |
+
"4 Salah Cedid\n"
|
904 |
+
]
|
905 |
+
}
|
906 |
+
],
|
907 |
+
"source": [
|
908 |
+
"from pymongo import MongoClient\n",
|
909 |
+
"import pandas as pd\n",
|
910 |
+
"import csv\n",
|
911 |
+
"\n",
|
912 |
+
"# MongoDB'ye bağlanma\n",
|
913 |
+
"\n",
|
914 |
+
"def get_titles(database_name='combined_text', collection_name='text', host='localhost', port=27017,batch_size=1000,output_file='titles_texts.csv'):\n",
|
915 |
+
" client = MongoClient(f'mongodb://{host}:{port}/')\n",
|
916 |
+
" db = client[database_name]\n",
|
917 |
+
" collection = db[collection_name]\n",
|
918 |
+
" \n",
|
919 |
+
" #toplam döküman sayısını al\n",
|
920 |
+
" total_documents = collection.count_documents({})\n",
|
921 |
+
" #batch_documents = []\n",
|
922 |
+
"\n",
|
923 |
+
"\n",
|
924 |
+
" # MongoDB'den sadece title alanlarını çekme\n",
|
925 |
+
" titles = collection.find({}, {\"_id\": 0, \"title\": 1})\n",
|
926 |
+
"\n",
|
927 |
+
" # Verileri liste haline getirme ve DataFrame'e dönüştürme\n",
|
928 |
+
" df = pd.DataFrame(list(titles))\n",
|
929 |
+
"\n",
|
930 |
+
" \n",
|
931 |
+
" # CSV dosyasını aç ve yazmaya hazırla\n",
|
932 |
+
" with open(output_file, mode='w', newline='', encoding='utf-8') as file:\n",
|
933 |
+
" writer = csv.writer(file)\n",
|
934 |
+
" writer.writerow([\"titles\"]) # CSV başlığı\n",
|
935 |
+
"\n",
|
936 |
+
" # Belirtilen batch_size kadar dökümanları almak için döngü\n",
|
937 |
+
" for i in range(0, total_documents, batch_size):\n",
|
938 |
+
" cursor = collection.find({}, {\"title\":1, \"_id\": 0}).skip(i).limit(batch_size)\n",
|
939 |
+
" combined_texts = [doc['title'] for doc in cursor if 'title' in doc] #combined sütununa ilişkin verileri çeker \n",
|
940 |
+
"\n",
|
941 |
+
" # Batch verilerini CSV'ye yaz\n",
|
942 |
+
" with open(output_file, mode='a', newline='', encoding='utf-8') as file:\n",
|
943 |
+
" writer = csv.writer(file)\n",
|
944 |
+
" \n",
|
945 |
+
" for text in combined_texts:\n",
|
946 |
+
" writer.writerow([text])\n",
|
947 |
+
" \n",
|
948 |
+
" \n",
|
949 |
+
"\n",
|
950 |
+
" print(f\"metin başlıkları '{output_file}' dosyasına başarıyla yazıldı.\")\n",
|
951 |
+
"\n",
|
952 |
+
" # DataFrame'i görüntüleme\n",
|
953 |
+
" print(df.head())\n",
|
954 |
+
"\n",
|
955 |
+
"# Dökümanları CSV dosyasına yazdır\n",
|
956 |
+
"text=get_titles(batch_size=5000)\n",
|
957 |
+
" #batch_documents.extend((combined_texts, len(combined_texts)))\n",
|
958 |
+
" #append fonksiyonu listenin içerisine tek bir eleman gibi ekler yani list1 = [1, 2, 3, [4, 5]]\n",
|
959 |
+
" #fakat extend fonksiyonu list1 = [1, 2, 3, 4, 5] bir listeye yeni bir liste eklemeyi teker teker gerçekleştirir.\n",
|
960 |
+
" #return batch_documents\n",
|
961 |
+
"\n",
|
962 |
+
"# Dökümanları ve döküman sayısını batch olarak çekin\n",
|
963 |
+
"#combined_texts = mongo_db_combined_texts(batch_size=1000)\n",
|
964 |
+
"\n",
|
965 |
+
"# Her batch'i ayrı ayrı işleyebilirsiniz\n",
|
966 |
+
"#print(f\"Toplam döküman sayısı:{len(combined_texts)}\")\n",
|
967 |
+
"\n",
|
968 |
+
"#for index, text in enumerate (combined_texts[:10]):\n",
|
969 |
+
" #print(f\"Döküman {index + 1}: {text}\")\n",
|
970 |
+
"\n",
|
971 |
+
"#print(combined_texts)\n",
|
972 |
+
"\n",
|
973 |
+
" \n",
|
974 |
+
"\n",
|
975 |
+
"\n",
|
976 |
+
"\n"
|
977 |
+
]
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"cell_type": "markdown",
|
981 |
+
"metadata": {},
|
982 |
+
"source": [
|
983 |
+
"Veri güncelleme "
|
984 |
+
]
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"cell_type": "code",
|
988 |
+
"execution_count": 6,
|
989 |
+
"metadata": {},
|
990 |
+
"outputs": [
|
991 |
+
{
|
992 |
+
"name": "stdout",
|
993 |
+
"output_type": "stream",
|
994 |
+
"text": [
|
995 |
+
" Document_Index Keyword_1 Keyword_2 Keyword_3 \\\n",
|
996 |
+
"0 1 ahecaqo pşıqo çerkes \n",
|
997 |
+
"1 2 craterolophinae depastridae craterolophus \n",
|
998 |
+
"2 3 notocrabro crabronina oymağına \n",
|
999 |
+
"3 4 sissoko wolfsburg panathinaikos \n",
|
1000 |
+
"4 5 baas cedid salah \n",
|
1001 |
+
"\n",
|
1002 |
+
" Keyword_4 Keyword_5 Keyword_6 Keyword_7 Keyword_8 Keyword_9 \\\n",
|
1003 |
+
"0 çerkesya 1777 savaşına lakapları qo bjeduğ \n",
|
1004 |
+
"1 altfamilyasıdır clark 1863 cinsler taksonomi 2023 \n",
|
1005 |
+
"2 cinstir bağlantılar kaynakça ghost ghetto ghez \n",
|
1006 |
+
"3 konyaspor deportivo étienne coruña kiralandı imzaladı \n",
|
1007 |
+
"4 1970 1993 1926 siyasetçiler fraksiyon bitar \n",
|
1008 |
+
"\n",
|
1009 |
+
" ... Score_1 Score_2 Score_3 Score_4 Score_5 Score_6 Score_7 Score_8 \\\n",
|
1010 |
+
"0 ... 0.5162 0.4130 0.3481 0.1903 0.1850 0.1740 0.1032 0.1032 \n",
|
1011 |
+
"1 ... 0.7030 0.4687 0.2343 0.2052 0.2011 0.1808 0.1745 0.1583 \n",
|
1012 |
+
"2 ... 0.6762 0.6762 0.2125 0.1782 0.0714 0.0588 0.0000 0.0000 \n",
|
1013 |
+
"3 ... 0.8107 0.2490 0.1245 0.1159 0.1159 0.1139 0.1121 0.1065 \n",
|
1014 |
+
"4 ... 0.5065 0.4892 0.2026 0.1679 0.1610 0.1403 0.1205 0.1062 \n",
|
1015 |
+
"\n",
|
1016 |
+
" Score_9 Score_10 \n",
|
1017 |
+
"0 0.1032 0.1032 \n",
|
1018 |
+
"1 0.1555 0.1458 \n",
|
1019 |
+
"2 0.0000 0.0000 \n",
|
1020 |
+
"3 0.0913 0.0896 \n",
|
1021 |
+
"4 0.1062 0.1062 \n",
|
1022 |
+
"\n",
|
1023 |
+
"[5 rows x 21 columns]\n"
|
1024 |
+
]
|
1025 |
+
}
|
1026 |
+
],
|
1027 |
+
"source": [
|
1028 |
+
"import pandas as pd\n",
|
1029 |
+
"\n",
|
1030 |
+
"# Örnek TF-IDF skoru ve anahtar kelimeler\n",
|
1031 |
+
"keyword_data = pd.read_csv('keywords_with_scores.csv')\n",
|
1032 |
+
"\n",
|
1033 |
+
"df = pd.DataFrame(keyword_data)\n",
|
1034 |
+
"print(df.head())\n"
|
1035 |
+
]
|
1036 |
+
},
|
1037 |
{
|
1038 |
"cell_type": "code",
|
1039 |
"execution_count": null,
|
1040 |
"metadata": {},
|
1041 |
"outputs": [],
|
1042 |
"source": [
|
1043 |
+
"import pandas as pd\n",
|
1044 |
+
"from langdetect import detect, DetectorFactory\n",
|
1045 |
+
"\n",
|
1046 |
+
"DetectorFactory.seed = 0 # Her zaman aynı sonuçları almak için\n",
|
1047 |
+
"\n",
|
1048 |
+
"def is_turkish(text):\n",
|
1049 |
+
" try:\n",
|
1050 |
+
" return detect(text) == 'tr'\n",
|
1051 |
+
" except:\n",
|
1052 |
+
" return False\n",
|
1053 |
+
"\n",
|
1054 |
+
"def filter_turkish_keywords(text):\n",
|
1055 |
+
" if pd.isna(text):\n",
|
1056 |
+
" return [] # NaN değerleri boş liste olarak döndür\n",
|
1057 |
+
" keywords = text.split(',') # Anahtar kelimeleri virgülle ayır\n",
|
1058 |
+
" return [kw.strip() for kw in keywords if is_turkish(kw.strip())]\n",
|
1059 |
+
"\n",
|
1060 |
+
"# CSV dosyasını oku\n",
|
1061 |
+
"df = pd.read_csv('path_to_your_file.csv')\n",
|
1062 |
+
"\n",
|
1063 |
+
"# Anahtar kelime sütunlarını belirle\n",
|
1064 |
+
"keyword_columns = ['Keyword_1', 'Keyword_2', 'Keyword_3', 'Keyword_4', 'Keyword_5', \n",
|
1065 |
+
" 'Keyword_6', 'Keyword_7', 'Keyword_8', 'Keyword_9', 'Keyword_10']\n",
|
1066 |
+
"\n",
|
1067 |
+
"# Her anahtar kelime sütunu için Türkçe olanları filtrele\n",
|
1068 |
+
"for col in keyword_columns:\n",
|
1069 |
+
" df[f'{col}_Turkish'] = df[col].apply(filter_turkish_keywords)\n",
|
1070 |
+
"\n",
|
1071 |
+
"print(df.head())\n"
|
1072 |
]
|
1073 |
}
|
1074 |
],
|