Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from imagedream.camera_utils import get_camera, convert_opengl_to_blender, normalize_camera | |
from imagedream.model_zoo import build_model | |
from imagedream.ldm.models.diffusion.ddim import DDIMSampler | |
from diffusers import DDIMScheduler | |
class ImageDream(nn.Module): | |
def __init__( | |
self, | |
device, | |
model_name='sd-v2.1-base-4view-ipmv', | |
ckpt_path=None, | |
t_range=[0.02, 0.98], | |
): | |
super().__init__() | |
self.device = device | |
self.model_name = model_name | |
self.ckpt_path = ckpt_path | |
self.model = build_model(self.model_name, ckpt_path=self.ckpt_path).eval().to(self.device) | |
self.model.device = device | |
for p in self.model.parameters(): | |
p.requires_grad_(False) | |
self.dtype = torch.float32 | |
self.num_train_timesteps = 1000 | |
self.min_step = int(self.num_train_timesteps * t_range[0]) | |
self.max_step = int(self.num_train_timesteps * t_range[1]) | |
self.image_embeddings = {} | |
self.embeddings = {} | |
self.scheduler = DDIMScheduler.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", subfolder="scheduler", torch_dtype=self.dtype | |
) | |
def get_image_text_embeds(self, image, prompts, negative_prompts): | |
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) | |
image_pil = TF.to_pil_image(image[0]) | |
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1) # [5, 257, 1280] | |
self.image_embeddings['pos'] = image_embeddings | |
self.image_embeddings['neg'] = torch.zeros_like(image_embeddings) | |
self.image_embeddings['ip_img'] = self.encode_imgs(image) | |
self.image_embeddings['neg_ip_img'] = torch.zeros_like(self.image_embeddings['ip_img']) | |
pos_embeds = self.encode_text(prompts).repeat(5,1,1) | |
neg_embeds = self.encode_text(negative_prompts).repeat(5,1,1) | |
self.embeddings['pos'] = pos_embeds | |
self.embeddings['neg'] = neg_embeds | |
return self.image_embeddings['pos'], self.image_embeddings['neg'], self.image_embeddings['ip_img'], self.image_embeddings['neg_ip_img'], self.embeddings['pos'], self.embeddings['neg'] | |
def encode_text(self, prompt): | |
# prompt: [str] | |
embeddings = self.model.get_learned_conditioning(prompt).to(self.device) | |
return embeddings | |
def refine(self, pred_rgb, camera, | |
guidance_scale=5, steps=50, strength=0.8, | |
): | |
batch_size = pred_rgb.shape[0] | |
real_batch_size = batch_size // 4 | |
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False) | |
latents = self.encode_imgs(pred_rgb_256.to(self.dtype)) | |
self.scheduler.set_timesteps(steps) | |
init_step = int(steps * strength) | |
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step]) | |
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis) | |
camera[:, 1] *= -1 | |
camera = normalize_camera(camera).view(batch_size, 16) | |
# extra view | |
camera = camera.view(real_batch_size, 4, 16) | |
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16] | |
camera = camera.view(real_batch_size * 5, 16) | |
camera = camera.repeat(2, 1) | |
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0) | |
context = { | |
"context": embeddings, | |
"ip": image_embeddings, | |
"ip_img": ip_img_embeddings, | |
"camera": camera, | |
"num_frames": 4 + 1 | |
} | |
for i, t in enumerate(self.scheduler.timesteps[init_step:]): | |
# extra view | |
latents = latents.view(real_batch_size, 4, 4, 32, 32) | |
latents = torch.cat([latents, torch.zeros_like(latents[:, :1])], dim=1).view(-1, 4, 32, 32) | |
latent_model_input = torch.cat([latents] * 2) | |
tt = torch.cat([t.unsqueeze(0).repeat(real_batch_size * 5)] * 2).to(self.device) | |
noise_pred = self.model.apply_model(latent_model_input, tt, context) | |
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
# remove extra view | |
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
latents = latents.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
imgs = self.decode_latents(latents) # [1, 3, 512, 512] | |
return imgs | |
def train_step( | |
self, | |
pred_rgb, # [B, C, H, W] | |
camera, # [B, 4, 4] | |
step_ratio=None, | |
guidance_scale=5, | |
as_latent=False, | |
): | |
batch_size = pred_rgb.shape[0] | |
real_batch_size = batch_size // 4 | |
pred_rgb = pred_rgb.to(self.dtype) | |
if as_latent: | |
latents = F.interpolate(pred_rgb, (32, 32), mode="bilinear", align_corners=False) * 2 - 1 | |
else: | |
# interp to 256x256 to be fed into vae. | |
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode="bilinear", align_corners=False) | |
# encode image into latents with vae, requires grad! | |
latents = self.encode_imgs(pred_rgb_256) | |
if step_ratio is not None: | |
# dreamtime-like | |
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio) | |
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step) | |
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device) | |
else: | |
t = torch.randint(self.min_step, self.max_step + 1, (real_batch_size,), dtype=torch.long, device=self.device).repeat(4) | |
camera = camera[:, [0, 2, 1, 3]] # to blender convention (flip y & z axis) | |
camera[:, 1] *= -1 | |
camera = normalize_camera(camera).view(batch_size, 16) | |
# extra view | |
camera = camera.view(real_batch_size, 4, 16) | |
camera = torch.cat([camera, torch.zeros_like(camera[:, :1])], dim=1) # [rB, 5, 16] | |
camera = camera.view(real_batch_size * 5, 16) | |
camera = camera.repeat(2, 1) | |
embeddings = torch.cat([self.embeddings['neg'].repeat(real_batch_size, 1, 1), self.embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
image_embeddings = torch.cat([self.image_embeddings['neg'].repeat(real_batch_size, 1, 1), self.image_embeddings['pos'].repeat(real_batch_size, 1, 1)], dim=0) | |
ip_img_embeddings= torch.cat([self.image_embeddings['neg_ip_img'].repeat(real_batch_size, 1, 1, 1), self.image_embeddings['ip_img'].repeat(real_batch_size, 1, 1, 1)], dim=0) | |
context = { | |
"context": embeddings, | |
"ip": image_embeddings, | |
"ip_img": ip_img_embeddings, | |
"camera": camera, | |
"num_frames": 4 + 1 | |
} | |
# predict the noise residual with unet, NO grad! | |
with torch.no_grad(): | |
# add noise | |
noise = torch.randn_like(latents) | |
latents_noisy = self.model.q_sample(latents, t, noise) # [B=4, 4, 32, 32] | |
# extra view | |
t = t.view(real_batch_size, 4) | |
t = torch.cat([t, t[:, :1]], dim=1).view(-1) | |
latents_noisy = latents_noisy.view(real_batch_size, 4, 4, 32, 32) | |
latents_noisy = torch.cat([latents_noisy, torch.zeros_like(latents_noisy[:, :1])], dim=1).view(-1, 4, 32, 32) | |
# pred noise | |
latent_model_input = torch.cat([latents_noisy] * 2) | |
tt = torch.cat([t] * 2) | |
# import kiui | |
# kiui.lo(latent_model_input, t, context['context'], context['camera']) | |
noise_pred = self.model.apply_model(latent_model_input, tt, context) | |
# perform guidance (high scale from paper!) | |
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
# remove extra view | |
noise_pred_uncond = noise_pred_uncond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
noise_pred_cond = noise_pred_cond.reshape(real_batch_size, 5, 4, 32, 32)[:, :-1].reshape(-1, 4, 32, 32) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
grad = (noise_pred - noise) | |
grad = torch.nan_to_num(grad) | |
target = (latents - grad).detach() | |
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum') / latents.shape[0] | |
return loss | |
def decode_latents(self, latents): | |
imgs = self.model.decode_first_stage(latents) | |
imgs = ((imgs + 1) / 2).clamp(0, 1) | |
return imgs | |
def encode_imgs(self, imgs): | |
# imgs: [B, 3, 256, 256] | |
imgs = 2 * imgs - 1 | |
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs)) | |
return latents # [B, 4, 32, 32] | |
def prompt_to_img( | |
self, | |
image, | |
prompts, | |
negative_prompts="", | |
height=256, | |
width=256, | |
num_inference_steps=50, | |
guidance_scale=5.0, | |
latents=None, | |
elevation=0, | |
azimuth_start=0, | |
): | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
if isinstance(negative_prompts, str): | |
negative_prompts = [negative_prompts] | |
real_batch_size = len(prompts) | |
batch_size = len(prompts) * 5 | |
# Text embeds -> img latents | |
sampler = DDIMSampler(self.model) | |
shape = [4, height // 8, width // 8] | |
c_ = {"context": self.encode_text(prompts).repeat(5,1,1)} | |
uc_ = {"context": self.encode_text(negative_prompts).repeat(5,1,1)} | |
# image embeddings | |
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) | |
image_pil = TF.to_pil_image(image[0]) | |
image_embeddings = self.model.get_learned_image_conditioning(image_pil).repeat(5,1,1).to(self.device) | |
c_["ip"] = image_embeddings | |
uc_["ip"] = torch.zeros_like(image_embeddings) | |
ip_img = self.encode_imgs(image) | |
c_["ip_img"] = ip_img | |
uc_["ip_img"] = torch.zeros_like(ip_img) | |
camera = get_camera(4, elevation=elevation, azimuth_start=azimuth_start, extra_view=True) | |
camera = camera.repeat(real_batch_size, 1).to(self.device) | |
c_["camera"] = uc_["camera"] = camera | |
c_["num_frames"] = uc_["num_frames"] = 5 | |
kiui.lo(image_embeddings, ip_img, camera) | |
latents, _ = sampler.sample(S=num_inference_steps, conditioning=c_, | |
batch_size=batch_size, shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=guidance_scale, | |
unconditional_conditioning=uc_, | |
eta=0, x_T=None) | |
# Img latents -> imgs | |
imgs = self.decode_latents(latents) # [4, 3, 256, 256] | |
kiui.lo(latents, imgs) | |
# Img to Numpy | |
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy() | |
imgs = (imgs * 255).round().astype("uint8") | |
return imgs | |
if __name__ == "__main__": | |
import argparse | |
import matplotlib.pyplot as plt | |
import kiui | |
parser = argparse.ArgumentParser() | |
parser.add_argument("image", type=str) | |
parser.add_argument("prompt", type=str) | |
parser.add_argument("--negative", default="", type=str) | |
parser.add_argument("--steps", type=int, default=30) | |
opt = parser.parse_args() | |
device = torch.device("cuda") | |
sd = ImageDream(device) | |
image = kiui.read_image(opt.image, mode='tensor') | |
image = image.permute(2, 0, 1).unsqueeze(0).to(device) | |
while True: | |
imgs = sd.prompt_to_img(image, opt.prompt, opt.negative, num_inference_steps=opt.steps) | |
grid = np.concatenate([ | |
np.concatenate([imgs[0], imgs[1]], axis=1), | |
np.concatenate([imgs[2], imgs[3]], axis=1), | |
], axis=0) | |
# visualize image | |
plt.imshow(grid) | |
plt.show() |