|
import gradio as gr |
|
import os, torch, io |
|
os.system('python -m unidic download') |
|
from melo.api import TTS |
|
speed = 1.0 |
|
import tempfile |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
model = TTS(language='EN', device=device) |
|
speaker_ids = model.hps.data.spk2id |
|
def synthesize(speaker, text, speed=1.0, progress=gr.Progress()): |
|
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as f: |
|
model.tts_to_file(text, speaker_ids[speaker], f.name, speed=speed, pbar=progress.tqdm) |
|
return f.name |
|
with gr.Blocks() as demo: |
|
gr.Markdown('# MeloTTS\n\nAn unofficial demo of [MeloTTS](https://github.com/myshell-ai/MeloTTS) from MyShell AI. MeloTTS is a permissively licensed (MIT) SOTA multi-speaker TTS model.\n\nI am not affiliated with MyShell AI in any way.\n\nThis demo currently only supports English, but the model itself supports other languages.') |
|
with gr.Group(): |
|
speaker = gr.Dropdown(speaker_ids.keys(), interactive=True, value='EN-Default', label='Speaker') |
|
speed = gr.Slider(label='Speed', minimum=0.1, maximum=10.0, value=1.0, interactive=True, step=0.1) |
|
text = gr.Textbox(label="Text to speak", value='The field of text to speech has seen rapid development recently') |
|
btn = gr.Button('Synthesize', variant='primary') |
|
aud = gr.Audio(interactive=False) |
|
btn.click(synthesize, inputs=[speaker, text, speed], outputs=[aud]) |
|
demo.queue(api_open=False, default_concurrency_limit=10).launch(show_api=False) |
|
|