File size: 17,159 Bytes
a6e635b
1854a09
 
e02b0f5
a6e635b
 
 
8ee45cc
a6e635b
 
 
 
 
 
 
 
 
0a91ae4
a6e635b
e02b0f5
 
 
 
a6e635b
699ffc9
 
 
 
 
 
 
a6e635b
 
 
 
 
 
 
 
8ee45cc
 
 
a6e635b
 
 
 
8ee45cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d6b3c
8ee45cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699ffc9
45d6b3c
8ee45cc
 
 
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699ffc9
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee45cc
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e774ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e635b
e774ced
 
 
 
5a73f09
e774ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a73f09
a6e635b
 
 
8ee45cc
a6e635b
e774ced
 
a6e635b
8ee45cc
 
 
 
a6e635b
8ee45cc
 
 
 
 
 
a6e635b
 
8ee45cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d6b3c
8ee45cc
 
 
 
 
 
 
 
 
 
 
 
a6e635b
 
 
699ffc9
a6e635b
 
 
 
fe3c641
 
a6e635b
fe3c641
8ee45cc
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee45cc
a6e635b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee45cc
a6e635b
 
 
8ee45cc
 
 
 
 
 
a6e635b
8ee45cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'

import sys
import cv2
import time
import json
import tqdm
import torch
import mcubes
import trimesh
import datetime
import argparse
import subprocess
import numpy as np
import gradio as gr
import imageio.v2 as imageio
import pytorch_lightning as pl
from omegaconf import OmegaConf
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

sys.path.append("3DTopia")

os.system("pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch")
os.system("pip install git+https://github.com/NVlabs/nvdiffrast")
os.system("pip install git+https://github.com/3DTopia/threefiner")

import tyro
import kiui

from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

from utility.initialize import instantiate_from_config, get_obj_from_str
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
from utility.triplane_renderer.renderer import get_rays, to8b

from threefiner.gui import GUI
from threefiner.opt import config_defaults, config_doc, check_options, Options

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)

###################################### INIT STAGE 1 #########################################
config = "3DTopia/configs/default.yaml"
download_ckpt = "3DTopia/checkpoints/3dtopia_diffusion_state_dict.ckpt"
if not os.path.exists(download_ckpt):
    ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
else:
    ckpt = download_ckpt
configs = OmegaConf.load(config)
os.makedirs("tmp", exist_ok=True)

if ckpt.endswith(".ckpt"):
    model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
elif ckpt.endswith(".safetensors"):
    model = get_obj_from_str(configs.model["target"])(**configs.model.params)
    model_ckpt = load_file(ckpt)
    model.load_state_dict(model_ckpt)
else:
    raise NotImplementedError
device = torch.device("cuda:1") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)

img_size = configs.model.params.unet_config.params.image_size
channels = configs.model.params.unet_config.params.in_channels
shape = [channels, img_size, img_size * 3]

pose_folder = '3DTopia/assets/sample_data/pose'
poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
batch_rays_list = []
H = 128
ratio = 512 // H
for p in poses_fname:
    c2w = np.loadtxt(p).reshape(4, 4)
    c2w[:3, 3] *= 2.2
    c2w = np.array([
        [1, 0, 0, 0],
        [0, 0, -1, 0],
        [0, 1, 0, 0],
        [0, 0, 0, 1]
    ]) @ c2w

    k = np.array([
        [560 / ratio, 0, H * 0.5],
        [0, 560 / ratio, H * 0.5],
        [0, 0, 1]
    ])

    rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
    coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
    coords = torch.reshape(coords, [-1,2]).long()
    rays_o = rays_o[coords[:, 0], coords[:, 1]]
    rays_d = rays_d[coords[:, 0], coords[:, 1]]
    batch_rays = torch.stack([rays_o, rays_d], 0)
    batch_rays_list.append(batch_rays)
batch_rays_list = torch.stack(batch_rays_list, 0)
###################################### INIT STAGE 1 #########################################

###################################### INIT STAGE 2 #########################################
GRADIO_SAVE_PATH_MESH = 'gradio_output.glb'
GRADIO_SAVE_PATH_VIDEO = 'gradio_output.mp4'

# opt = tyro.cli(tyro.extras.subcommand_type_from_defaults(config_defaults, config_doc))
opt = Options(
    mode='IF2',
    iters=400,
)

# hacks for not loading mesh at initialization
# opt.mesh = 'tmp/_2024-01-25_19:33:03.110191_if2.glb'
opt.save = GRADIO_SAVE_PATH_MESH
opt.prompt = ''
opt.text_dir = True
opt.front_dir = '+z'
opt.force_cuda_rast = True
device0 = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
gui = GUI(opt)
###################################### INIT STAGE 2 #########################################

def add_text(rgb, caption):
    font = cv2.FONT_HERSHEY_SIMPLEX
    # org
    gap = 10
    org = (gap, gap)
    # fontScale
    fontScale = 0.3
    # Blue color in BGR
    color = (255, 0, 0)
    # Line thickness of 2 px
    thickness = 1
    break_caption = []
    for i in range(len(caption) // 30 + 1):
        break_caption_i = caption[i*30:(i+1)*30]
        break_caption.append(break_caption_i)
    for i, bci in enumerate(break_caption):
        cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
    return rgb

def marching_cube(b, text, global_info):
    # prepare volumn for marching cube
    res = 64
    assert 'decode_res' in global_info
    decode_res = global_info['decode_res']
    c_list = torch.linspace(-1.2, 1.2, steps=res)
    grid_x, grid_y, grid_z = torch.meshgrid(
        c_list, c_list, c_list, indexing='ij'
    )
    coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
    plane_axes = generate_planes()
    feats = sample_from_planes(
        plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
    )
    fake_dirs = torch.zeros_like(coords)
    fake_dirs[..., 0] = 1
    out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
    u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
    del out

    # marching cube
    vertices, triangles = mcubes.marching_cubes(u, 10)
    min_bound = np.array([-1.2, -1.2, -1.2])
    max_bound = np.array([1.2, 1.2, 1.2])
    vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
    pt_vertices = torch.from_numpy(vertices).to(device)

    # extract vertices color
    res_triplane = 256
    render_kwargs = {
        'depth_resolution': 128,
        'disparity_space_sampling': False,
        'box_warp': 2.4,
        'depth_resolution_importance': 128,
        'clamp_mode': 'softplus',
        'white_back': True,
        'det': True
    }
    rays_o_list = [
        np.array([0, 0, 2]),
        np.array([0, 0, -2]),
        np.array([0, 2, 0]),
        np.array([0, -2, 0]),
        np.array([2, 0, 0]),
        np.array([-2, 0, 0]),
    ]
    rgb_final = None
    diff_final = None
    for rays_o in tqdm.tqdm(rays_o_list):
        rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
        rays_d = pt_vertices.reshape(-1, 3) - rays_o
        rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
        dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)

        render_out = model.first_stage_model.triplane_decoder(
            decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
            rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
            whole_img=False, tvloss=False
        )
        rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
        depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
        depth_diff = np.abs(dist - depth)

        if rgb_final is None:
            rgb_final = rgb.copy()
            diff_final = depth_diff.copy()

        else:
            ind = diff_final > depth_diff
            rgb_final[ind] = rgb[ind]
            diff_final[ind] = depth_diff[ind]

    # bgr to rgb
    rgb_final = np.stack([
        rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
    ], -1)

    # export to ply
    mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
    path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply")
    trimesh.exchange.export.export_mesh(mesh, path, file_type='ply')

    del vertices, triangles, rgb_final
    torch.cuda.empty_cache()

    return path

def infer(prompt, samples, steps, scale, seed, global_info):
    with torch.cuda.device(1):
        prompt = prompt.replace('/', '')
        pl.seed_everything(seed)
        batch_size = samples
        with torch.no_grad():
            noise = None
            c = model.get_learned_conditioning([prompt])
            unconditional_c = torch.zeros_like(c)
            sample, _ = sampler.sample(
                S=steps,
                batch_size=batch_size,
                shape=shape,
                verbose=False,
                x_T = noise,
                conditioning = c.repeat(batch_size, 1, 1),
                unconditional_guidance_scale=scale,
                unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
            )
            decode_res = model.decode_first_stage(sample)
    
            big_video_list = []
    
            global_info['decode_res'] = decode_res.detach()
    
            for b in range(batch_size):
                def render_img(v):
                    rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
                        decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
                    )
                    rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
                    rgb_sample = np.stack(
                        [rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
                    )
                    rgb_sample = add_text(rgb_sample, str(b))
                    return rgb_sample
    
                view_num = len(batch_rays_list)
                video_list = []
                for v in tqdm.tqdm(range(view_num//8*3, view_num//8*5, 2)):
                    rgb_sample = render_img(v)
                    video_list.append(rgb_sample)
                big_video_list.append(video_list)
            # if batch_size == 2:
            #     cat_video_list = [
            #         np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \
            #         for i in range(len(big_video_list[0]))
            #     ]
            # elif batch_size > 2:
            #     if batch_size == 3:
            #         big_video_list.append(
            #             [np.zeros_like(f) for f in big_video_list[0]]
            #         )
            #     cat_video_list = [
            #         np.concatenate([
            #             np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
            #             np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
            #         ], 0) \
            #         for i in range(len(big_video_list[0]))
            #     ]
            # else:
            #     cat_video_list = big_video_list[0]
    
            for _ in range(4 - batch_size):
                big_video_list.append(
                    [np.zeros_like(f) + 255 for f in big_video_list[0]]
                )
            cat_video_list = [
                np.concatenate([
                    np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
                    np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
                ], 0) \
                for i in range(len(big_video_list[0]))
            ]
    
            path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
            imageio.mimwrite(path, np.stack(cat_video_list, 0))
            torch.cuda.empty_cache()

    return global_info, path

def infer_stage2(prompt, selection, seed, global_info, iters):
    prompt = prompt.replace('/', '')
    with torch.cuda.device(1):
        mesh_path = marching_cube(int(selection), prompt, global_info)
    mesh_name = mesh_path.split('/')[-1][:-4]
    # if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y"
    # print(if2_cmd)
    # subprocess.Popen(if2_cmd, shell=True).wait()
    # torch.cuda.empty_cache()
    video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
    # render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256"
    # print(render_cmd)
    # subprocess.Popen(render_cmd, shell=True).wait()
    # torch.cuda.empty_cache()

    process_stage2(mesh_path, prompt, "down", iters, f'tmp/{mesh_name}_if2.glb', video_path)
    torch.cuda.empty_cache()

    return video_path, f'tmp/{mesh_name}_if2.glb'

def process_stage2(input_model, input_text, input_dir, iters, output_model, output_video):
    # set front facing direction (map from gradio model3D's mysterious coordinate system to OpenGL...)
    opt.text_dir = True
    if input_dir == 'front':
        opt.front_dir = '-z'
    elif input_dir == 'back':
        opt.front_dir = '+z'
    elif input_dir == 'left':
        opt.front_dir = '+x'
    elif input_dir == 'right':
        opt.front_dir = '-x'
    elif input_dir == 'up':
        opt.front_dir = '+y'
    elif input_dir == 'down':
        opt.front_dir = '-y'
    else:
        # turn off text_dir
        opt.text_dir = False
        opt.front_dir = '+z'
    
    # set mesh path
    opt.mesh = input_model

    # load mesh!
    gui.renderer = gui.renderer_class(opt, device0).to(device0)

    # set prompt
    gui.prompt = opt.positive_prompt + ', ' + input_text

    # train
    gui.prepare_train() # update optimizer and prompt embeddings
    for i in tqdm.trange(iters):
        gui.train_step()

    # save mesh & video
    gui.save_model(output_model)
    gui.save_model(output_video)

markdown=f'''
  # 3DTopia
  ![](https://visitor-badge.laobi.icu/badge?page_id=3DTopia.3DTopia.gradio)
  A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage.

  ### Usage:
  First enter prompt for a 3D object, hit "Generate 3D". Then choose one candidate from the dropdown options for the second stage refinement and hit "Start Refinement". The final mesh can be downloaded from the bottom right box.

  Note that this demo is not the complete version due to resource limitations. Specifically, the second stage only uses one-step optimization instead of two, which could result in blurry textures. Please kindly refer to our github repo for the complete version.
  
  ### Generation Speed:
  The first stage takes 30s if generating 4 samples. The second stage takes roughly 1m30s.

  ### Useful links:
  [Github Repo](https://github.com/3DTopia/3DTopia)
'''

block = gr.Blocks()

with block:
    global_info = gr.State(dict())
    gr.Markdown(markdown)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                text = gr.Textbox(
                    label = "Enter your prompt",
                    max_lines = 1,
                    placeholder = "Enter your prompt",
                    container = False,
                )
                btn = gr.Button("Generate 3D")
            gallery = gr.Video(height=512)
            # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
            with gr.Row(elem_id="advanced-options"):
                with gr.Tab("Advanced options"):
                    samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1)
                    scale = gr.Slider(
                        label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=2147483647,
                        step=1,
                        randomize=True,
                    )
            gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery])
            # advanced_button.click(
            #     None,
            #     [],
            #     text,
            # )
        with gr.Column():
            with gr.Row():
                dropdown = gr.Dropdown(
                    ['0', '1', '2', '3'], label="Choose a Candidate For Stage2", value='0'
                )
                btn_stage2 = gr.Button("Start Refinement")
            gallery = gr.Video(height=512)
            with gr.Row(elem_id="advanced-options"):
                with gr.Tab("Advanced options"):
                    # input_dir = gr.Radio(['front', 'back', 'left', 'right', 'up', 'down'], value='down', label="front-facing direction")
                    iters = gr.Slider(minimum=100, maximum=1000, step=100, value=400, label="Refine iterations")
            download = gr.File(label="Download Mesh", file_count="single", height=100)
            gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info, iters], outputs=[gallery, download])

block.launch(share=True)