ysharma's picture
ysharma HF staff
updated desc
6342809
raw
history blame
4.91 kB
import gradio as gr
import requests
import os
import PIL
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
##Bloom
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
HF_TOKEN = os.environ["HF_TOKEN"]
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def write_on_image(final_solution):
print("************ Inside write_on_image ***********")
image_path0 = "./distracted0.jpg"
image0 = Image.open(image_path0)
I1 = ImageDraw.Draw(image0)
myfont = ImageFont.truetype('./font1.ttf', 30)
prompt_list = final_solution.split('\n')
girlfriend = prompt_list[8].split(':')[1].strip()
girlfriend_list = girlfriend.split()
if len(girlfriend_list) >= 2:
girlfriend = '\n'.join(girlfriend_list)
print(f"girlfriend is : {girlfriend }")
new_girl = prompt_list[9].split(':')[1].strip()
new_girl_list = new_girl.split()
if len(new_girl_list) > 2:
new_girl = '\n'.join(new_girl_list)
print(f"new_girl is : {new_girl}")
prompt_list.pop(0)
prompt_list.pop(0)
prompt_list = prompt_list[:8]
prompt_list.append('Distracted from:')
print(f"prompt list is : {prompt_list}")
new_prompt = '\n'.join(prompt_list)
print(f"final_solution is : {new_prompt}")
I1.text((613, 89), girlfriend,font=myfont, fill =(255, 255, 255))
I1.text((371, 223), "ME", font=myfont, fill =(255, 255, 255))
I1.text((142, 336), new_girl,font=myfont, fill =(255, 255, 255))
return image0, new_prompt
def meme_generate(img, prompt, temp, top_p): #prompt, generated_txt): #, input_prompt_sql ): #, input_prompt_dalle2):
print(f"*****Inside meme_generate - Prompt is :{prompt}")
if len(prompt) == 0:
prompt = """Distracted from: homework\nby: side project\nDistracted from: goals\nby: new goals\nDistracted from: working hard\nby: hardly working\nDistracted from: twitter\nby: open in browser\nDistracted from:"""
json_ = {"inputs": prompt,
"parameters":
{
"top_p": top_p, #0.90 default
"max_new_tokens": 250,
"temperature": temp, #1.1 default
"return_full_text": True,
"do_sample": True,
},
"options":
{"use_cache": True,
"wait_for_model": True,
},}
response = requests.post(API_URL, headers=headers, json=json_)
print(f"Response is : {response}")
output = response.json()
print(f"output is : {output}")
output_tmp = output[0]['generated_text']
print(f"output_tmp is: {output_tmp}")
solution = output_tmp.split("\nQ:")[0]
print(f"Final response after splits is: {solution}")
meme_image, new_prompt = write_on_image(solution)
return meme_image, new_prompt
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Distracted Boyfriend Meme😄- Using Bloom 🌸 </center></h1>")
gr.Markdown(
"""Bloom is a model made by research teams from [HuggingFace](https://huggingface.co/bigscience/bloom) and world over (more than 1000 researchers coming together and working as [BigScienceW Bloom](https://twitter.com/BigscienceW)).Large language models can produce coherent sentences but can they produce **Humor** too? Yes, they can, given the correct prompt (And Yes, Prompt Engineering 🤖 should definitely become a thing by now).\n\n**How to Use this App**: Just Fire Away the Generate Meme button below, as many times as you want!! If you see repeated or similar memes getting generated in consecutive runs, toggle temperature and top_p values.\n\n**How this App works**: Figuring out the right set of Prompting + Writing on an Image + Bit of engineering. Currently, Bloom's Public API has size-limits on Token-Generation, so you can get only few tokens generated at a time.\n\n<pre> Bloom generating very few tokens When Few words are Enough</pre>\n\n<pre><span style='font-size:30px'> 🤝Memes</span></pre>\n\n\nIt is a fun little App which you can play with for a while.\n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma)"""
)
# <span style="color:green;font-weight:700;font-size:20px">markdown color font styles</span>
with gr.Row():
in_image = gr.Image(value="./distracted0.jpg", visible=False)
in_image_display = gr.Image(value="./distracted00.jpg", visible=True)
input_prompt = gr.Textbox(label="Write some prompt...", lines=5, visible=False)
output_image = gr.Image()
with gr.Row():
in_slider_temp = gr.Slider(minimum=0.0, maximum=1.4, value=1.1, step=0.1, label='Temperature')
in_slider_top_p = gr.Slider(minimum=0.50, maximum=0.99, value=0.90, step=0.01, label='Top_p')
b1 = gr.Button("Generate Memes")
b1.click(meme_generate, inputs=[in_image, input_prompt, in_slider_temp, in_slider_top_p] , outputs=[output_image,input_prompt])
demo.launch(enable_queue=True, debug=True)