import gradio as gr import torch from threading import Thread from PIL import Image from transformers import TextIteratorStreamer from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor from PIL import Image import spaces PLACEHOLDER = """

Falcon2-11B-VLM

Falcon2-11B-VLM is an 11B parameters causal decoder-only model built by TII

""" model_id = "tiiuae/falcon-11B-vlm" processor = LlavaNextProcessor.from_pretrained("tiiuae/falcon-11B-vlm", tokenizer_class='PreTrainedTokenizerFast') model = LlavaNextForConditionalGeneration.from_pretrained("tiiuae/falcon-11B-vlm", torch_dtype=torch.bfloat16, #torch_dtype=torch.float16, low_cpu_mem_usage=True,) model.to("cuda:0") @spaces.GPU def bot_streaming(message, history): print(f'message is - {message}') print(f'history is - {history}') if message["files"]: # message["files"][-1] is a Dict or just a string if type(message["files"][-1]) == dict: image = message["files"][-1]["path"] else: image = message["files"][-1] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0]) == tuple: image = hist[0][0] try: if image is None: # Handle the case where image is None raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.") except NameError: # Handle the case where 'image' is not defined at all raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.") prompt = f"""User:\n{message['text']} Falcon:""" image = Image.open(image) inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) with gr.Blocks(fill_height=True, ) as demo: gr.ChatInterface( fn=bot_streaming, title="FalconVLM", examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, {"text": "How to make this pastry?", "files": ["./baklava.png"]}], description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. This is not the official demo.", stop_btn="Stop Generation", multimodal=True, textbox=chat_input, chatbot=chatbot, cache_examples=False, ) demo.queue() demo.launch()