File size: 11,684 Bytes
b887ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

import torch
from tqdm import tqdm

import numpy as np
from utils.transforms import *

import pickle
from typing import Optional
# import smplx
# from smplx.lbs import vertices2joints
import os
# from smplx import SMPL as _SMPL
# from smplx.body_models import ModelOutput

smpl_joints = [
    "root",  # 0
    "lhip",  # 1
    "rhip",  # 2
    "belly", # 3
    "lknee", # 4
    "rknee", # 5
    "spine", # 6
    "lankle",# 7
    "rankle",# 8
    "chest", # 9
    "ltoes", # 10
    "rtoes", # 11
    "neck",  # 12
    "linshoulder", # 13
    "rinshoulder", # 14
    "head", # 15
    "lshoulder", # 16
    "rshoulder",  # 17
    "lelbow", # 18
    "relbow",  # 19
    "lwrist", # 20
    "rwrist", # 21
    # "lhand", # 22
    # "rhand", # 23
]

smpl_parents = [
    -1,
    0,
    0,
    0,
    1,
    2,
    3,
    4,
    5,
    6,
    7,
    8,
    9,
    9,
    9,
    12,
    13,
    14,
    16,
    17,
    18,
    19,
    # 20,
    # 21,
]

smpl_offsets = [
    [0.0, 0.0, 0.0],
    [0.05858135, -0.08228004, -0.01766408],
    [-0.06030973, -0.09051332, -0.01354254],
    [0.00443945, 0.12440352, -0.03838522],
    [0.04345142, -0.38646945, 0.008037],
    [-0.04325663, -0.38368791, -0.00484304],
    [0.00448844, 0.1379564, 0.02682033],
    [-0.01479032, -0.42687458, -0.037428],
    [0.01905555, -0.4200455, -0.03456167],
    [-0.00226458, 0.05603239, 0.00285505],
    [0.04105436, -0.06028581, 0.12204243],
    [-0.03483987, -0.06210566, 0.13032329],
    [-0.0133902, 0.21163553, -0.03346758],
    [0.07170245, 0.11399969, -0.01889817],
    [-0.08295366, 0.11247234, -0.02370739],
    [0.01011321, 0.08893734, 0.05040987],
    [0.12292141, 0.04520509, -0.019046],
    [-0.11322832, 0.04685326, -0.00847207],
    [0.2553319, -0.01564902, -0.02294649],
    [-0.26012748, -0.01436928, -0.03126873],
    [0.26570925, 0.01269811, -0.00737473],
    [-0.26910836, 0.00679372, -0.00602676],
    # [0.08669055, -0.01063603, -0.01559429],
    # [-0.0887537, -0.00865157, -0.01010708],
]


def set_line_data_3d(line, x):
    line.set_data(x[:, :2].T)
    line.set_3d_properties(x[:, 2])


def set_scatter_data_3d(scat, x, c):
    scat.set_offsets(x[:, :2])
    scat.set_3d_properties(x[:, 2], "z")
    scat.set_facecolors([c])


def get_axrange(poses):
    pose = poses[0]
    x_min = pose[:, 0].min()
    x_max = pose[:, 0].max()

    y_min = pose[:, 1].min()
    y_max = pose[:, 1].max()

    z_min = pose[:, 2].min()
    z_max = pose[:, 2].max()

    xdiff = x_max - x_min
    ydiff = y_max - y_min
    zdiff = z_max - z_min

    biggestdiff = max([xdiff, ydiff, zdiff])
    return biggestdiff


def plot_single_pose(num, poses, lines, ax, axrange, scat, contact):
    pose = poses[num]
    static = contact[num]
    indices = [7, 8, 10, 11]

    for i, (point, idx) in enumerate(zip(scat, indices)):
        position = pose[idx : idx + 1]
        color = "r" if static[i] else "g"
        set_scatter_data_3d(point, position, color)

    for i, (p, line) in enumerate(zip(smpl_parents, lines)):
        # don't plot root
        if i == 0:
            continue
        # stack to create a line
        data = np.stack((pose[i], pose[p]), axis=0)
        set_line_data_3d(line, data)

    if num == 0:
        if isinstance(axrange, int):
            axrange = (axrange, axrange, axrange)
        xcenter, ycenter, zcenter = 0, 0, 2.5
        stepx, stepy, stepz = axrange[0] / 2, axrange[1] / 2, axrange[2] / 2

        x_min, x_max = xcenter - stepx, xcenter + stepx
        y_min, y_max = ycenter - stepy, ycenter + stepy
        z_min, z_max = zcenter - stepz, zcenter + stepz

        ax.set_xlim(x_min, x_max)
        ax.set_ylim(y_min, y_max)
        ax.set_zlim(z_min, z_max)


class SMPLSkeleton:
    def __init__(
        self, device=None,
    ):
        offsets = smpl_offsets
        parents = smpl_parents
        assert len(offsets) == len(parents)

        self._offsets = torch.Tensor(offsets).to(device)
        self._parents = np.array(parents)
        self._compute_metadata()

    def _compute_metadata(self):
        self._has_children = np.zeros(len(self._parents)).astype(bool)
        for i, parent in enumerate(self._parents):
            if parent != -1:
                self._has_children[parent] = True

        self._children = []
        for i, parent in enumerate(self._parents):
            self._children.append([])
        for i, parent in enumerate(self._parents):
            if parent != -1:
                self._children[parent].append(i)

    def forward(self, rotations, root_positions):
        """
        Perform forward kinematics using the given trajectory and local rotations.
        Arguments (where N = batch size, L = sequence length, J = number of joints):
         -- rotations: (N, L, J, 3) tensor of axis-angle rotations describing the local rotations of each joint.
         -- root_positions: (N, L, 3) tensor describing the root joint positions.
        """
        assert len(rotations.shape) == 4
        assert len(root_positions.shape) == 3
        # transform from axis angle to quaternion
        rotations = axis_angle_to_quaternion(rotations)

        positions_world = []
        rotations_world = []

        expanded_offsets = self._offsets.expand(
            rotations.shape[0],
            rotations.shape[1],
            self._offsets.shape[0],
            self._offsets.shape[1],
        )

        # Parallelize along the batch and time dimensions
        for i in range(self._offsets.shape[0]):
            if self._parents[i] == -1:
                positions_world.append(root_positions)
                rotations_world.append(rotations[:, :, 0])
            else:
                positions_world.append(
                    quaternion_apply(
                        rotations_world[self._parents[i]], expanded_offsets[:, :, i]
                    )
                    + positions_world[self._parents[i]]
                )
                if self._has_children[i]:
                    rotations_world.append(
                        quaternion_multiply(
                            rotations_world[self._parents[i]], rotations[:, :, i]
                        )
                    )
                else:
                    # This joint is a terminal node -> it would be useless to compute the transformation
                    rotations_world.append(None)

        return torch.stack(positions_world, dim=3).permute(0, 1, 3, 2)


# class SMPL_old(smplx.SMPLLayer):
#     def __init__(self, *args, joint_regressor_extra: Optional[str] = None, update_hips: bool = False, **kwargs):
#         """
#         Extension of the official SMPL implementation to support more joints.
#         Args:
#             Same as SMPLLayer.
#             joint_regressor_extra (str): Path to extra joint regressor.
#         """
#         super(SMPL, self).__init__(*args, **kwargs)
#         smpl_to_openpose = [24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
#                             7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]
            
#         if joint_regressor_extra is not None:
#             self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32))
#         self.register_buffer('joint_map', torch.tensor(smpl_to_openpose, dtype=torch.long))
#         self.update_hips = update_hips

#     def forward(self, *args, **kwargs):
#         """
#         Run forward pass. Same as SMPL and also append an extra set of joints if joint_regressor_extra is specified.
#         """
#         smpl_output = super(SMPL, self).forward(*args, **kwargs)
#         joints = smpl_output.joints[:, self.joint_map, :]
#         if self.update_hips:
#             joints[:,[9,12]] = joints[:,[9,12]] + \
#                 0.25*(joints[:,[9,12]]-joints[:,[12,9]]) + \
#                 0.5*(joints[:,[8]] - 0.5*(joints[:,[9,12]] + joints[:,[12,9]]))
#         if hasattr(self, 'joint_regressor_extra'):
#             extra_joints = vertices2joints(self.joint_regressor_extra, smpl_output.vertices)
#             joints = torch.cat([joints, extra_joints], dim=1)
#         smpl_output.joints = joints
#         return smpl_output

# Map joints to SMPL joints
JOINT_MAP = {
    'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
    'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
    'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
    'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
    'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
    'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
    'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
    'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
    'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
    'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
    'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
    'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
    'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
    'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
    'Spine (H36M)': 51, 'Jaw (H36M)': 52,
    'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
    'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
}
JOINT_NAMES = [
    'OP Nose', 'OP Neck', 'OP RShoulder',
    'OP RElbow', 'OP RWrist', 'OP LShoulder',
    'OP LElbow', 'OP LWrist', 'OP MidHip',
    'OP RHip', 'OP RKnee', 'OP RAnkle',
    'OP LHip', 'OP LKnee', 'OP LAnkle',
    'OP REye', 'OP LEye', 'OP REar',
    'OP LEar', 'OP LBigToe', 'OP LSmallToe',
    'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
    'Right Ankle', 'Right Knee', 'Right Hip',
    'Left Hip', 'Left Knee', 'Left Ankle',
    'Right Wrist', 'Right Elbow', 'Right Shoulder',
    'Left Shoulder', 'Left Elbow', 'Left Wrist',
    'Neck (LSP)', 'Top of Head (LSP)',
    'Pelvis (MPII)', 'Thorax (MPII)',
    'Spine (H36M)', 'Jaw (H36M)',
    'Head (H36M)', 'Nose', 'Left Eye',
    'Right Eye', 'Left Ear', 'Right Ear'
]
BASE_DATA_DIR = "/data2/TSMC_data/base_data"
JOINT_IDS = {JOINT_NAMES[i]: i for i in range(len(JOINT_NAMES))}
JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(BASE_DATA_DIR, 'J_regressor_extra.npy')
SMPL_MEAN_PARAMS = os.path.join(BASE_DATA_DIR, 'smpl_mean_params.npz')
SMPL_MODEL_DIR = BASE_DATA_DIR
H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9]
H36M_TO_J14 = H36M_TO_J17[:14]


# class SMPL(_SMPL):
#     """ Extension of the official SMPL implementation to support more joints """

#     def __init__(self, *args, **kwargs):
#         super(SMPL, self).__init__(*args, **kwargs)
#         joints = [JOINT_MAP[i] for i in JOINT_NAMES]
#         J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
#         self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
#         self.joint_map = torch.tensor(joints, dtype=torch.long)


#     def forward(self, *args, **kwargs):
#         kwargs['get_skin'] = True
#         smpl_output = super(SMPL, self).forward(*args, **kwargs)
#         extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
#         joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
#         joints = joints[:, self.joint_map, :]
#         output = ModelOutput(vertices=smpl_output.vertices,
#                              global_orient=smpl_output.global_orient,
#                              body_pose=smpl_output.body_pose,
#                              joints=joints,
#                              betas=smpl_output.betas,
#                              full_pose=smpl_output.full_pose)
#         return output


# def get_smpl_faces():
#     print("Get SMPL faces")
#     smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False)
#     return smpl.faces