File size: 11,684 Bytes
b887ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import torch
from tqdm import tqdm
import numpy as np
from utils.transforms import *
import pickle
from typing import Optional
# import smplx
# from smplx.lbs import vertices2joints
import os
# from smplx import SMPL as _SMPL
# from smplx.body_models import ModelOutput
smpl_joints = [
"root", # 0
"lhip", # 1
"rhip", # 2
"belly", # 3
"lknee", # 4
"rknee", # 5
"spine", # 6
"lankle",# 7
"rankle",# 8
"chest", # 9
"ltoes", # 10
"rtoes", # 11
"neck", # 12
"linshoulder", # 13
"rinshoulder", # 14
"head", # 15
"lshoulder", # 16
"rshoulder", # 17
"lelbow", # 18
"relbow", # 19
"lwrist", # 20
"rwrist", # 21
# "lhand", # 22
# "rhand", # 23
]
smpl_parents = [
-1,
0,
0,
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
9,
9,
12,
13,
14,
16,
17,
18,
19,
# 20,
# 21,
]
smpl_offsets = [
[0.0, 0.0, 0.0],
[0.05858135, -0.08228004, -0.01766408],
[-0.06030973, -0.09051332, -0.01354254],
[0.00443945, 0.12440352, -0.03838522],
[0.04345142, -0.38646945, 0.008037],
[-0.04325663, -0.38368791, -0.00484304],
[0.00448844, 0.1379564, 0.02682033],
[-0.01479032, -0.42687458, -0.037428],
[0.01905555, -0.4200455, -0.03456167],
[-0.00226458, 0.05603239, 0.00285505],
[0.04105436, -0.06028581, 0.12204243],
[-0.03483987, -0.06210566, 0.13032329],
[-0.0133902, 0.21163553, -0.03346758],
[0.07170245, 0.11399969, -0.01889817],
[-0.08295366, 0.11247234, -0.02370739],
[0.01011321, 0.08893734, 0.05040987],
[0.12292141, 0.04520509, -0.019046],
[-0.11322832, 0.04685326, -0.00847207],
[0.2553319, -0.01564902, -0.02294649],
[-0.26012748, -0.01436928, -0.03126873],
[0.26570925, 0.01269811, -0.00737473],
[-0.26910836, 0.00679372, -0.00602676],
# [0.08669055, -0.01063603, -0.01559429],
# [-0.0887537, -0.00865157, -0.01010708],
]
def set_line_data_3d(line, x):
line.set_data(x[:, :2].T)
line.set_3d_properties(x[:, 2])
def set_scatter_data_3d(scat, x, c):
scat.set_offsets(x[:, :2])
scat.set_3d_properties(x[:, 2], "z")
scat.set_facecolors([c])
def get_axrange(poses):
pose = poses[0]
x_min = pose[:, 0].min()
x_max = pose[:, 0].max()
y_min = pose[:, 1].min()
y_max = pose[:, 1].max()
z_min = pose[:, 2].min()
z_max = pose[:, 2].max()
xdiff = x_max - x_min
ydiff = y_max - y_min
zdiff = z_max - z_min
biggestdiff = max([xdiff, ydiff, zdiff])
return biggestdiff
def plot_single_pose(num, poses, lines, ax, axrange, scat, contact):
pose = poses[num]
static = contact[num]
indices = [7, 8, 10, 11]
for i, (point, idx) in enumerate(zip(scat, indices)):
position = pose[idx : idx + 1]
color = "r" if static[i] else "g"
set_scatter_data_3d(point, position, color)
for i, (p, line) in enumerate(zip(smpl_parents, lines)):
# don't plot root
if i == 0:
continue
# stack to create a line
data = np.stack((pose[i], pose[p]), axis=0)
set_line_data_3d(line, data)
if num == 0:
if isinstance(axrange, int):
axrange = (axrange, axrange, axrange)
xcenter, ycenter, zcenter = 0, 0, 2.5
stepx, stepy, stepz = axrange[0] / 2, axrange[1] / 2, axrange[2] / 2
x_min, x_max = xcenter - stepx, xcenter + stepx
y_min, y_max = ycenter - stepy, ycenter + stepy
z_min, z_max = zcenter - stepz, zcenter + stepz
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_zlim(z_min, z_max)
class SMPLSkeleton:
def __init__(
self, device=None,
):
offsets = smpl_offsets
parents = smpl_parents
assert len(offsets) == len(parents)
self._offsets = torch.Tensor(offsets).to(device)
self._parents = np.array(parents)
self._compute_metadata()
def _compute_metadata(self):
self._has_children = np.zeros(len(self._parents)).astype(bool)
for i, parent in enumerate(self._parents):
if parent != -1:
self._has_children[parent] = True
self._children = []
for i, parent in enumerate(self._parents):
self._children.append([])
for i, parent in enumerate(self._parents):
if parent != -1:
self._children[parent].append(i)
def forward(self, rotations, root_positions):
"""
Perform forward kinematics using the given trajectory and local rotations.
Arguments (where N = batch size, L = sequence length, J = number of joints):
-- rotations: (N, L, J, 3) tensor of axis-angle rotations describing the local rotations of each joint.
-- root_positions: (N, L, 3) tensor describing the root joint positions.
"""
assert len(rotations.shape) == 4
assert len(root_positions.shape) == 3
# transform from axis angle to quaternion
rotations = axis_angle_to_quaternion(rotations)
positions_world = []
rotations_world = []
expanded_offsets = self._offsets.expand(
rotations.shape[0],
rotations.shape[1],
self._offsets.shape[0],
self._offsets.shape[1],
)
# Parallelize along the batch and time dimensions
for i in range(self._offsets.shape[0]):
if self._parents[i] == -1:
positions_world.append(root_positions)
rotations_world.append(rotations[:, :, 0])
else:
positions_world.append(
quaternion_apply(
rotations_world[self._parents[i]], expanded_offsets[:, :, i]
)
+ positions_world[self._parents[i]]
)
if self._has_children[i]:
rotations_world.append(
quaternion_multiply(
rotations_world[self._parents[i]], rotations[:, :, i]
)
)
else:
# This joint is a terminal node -> it would be useless to compute the transformation
rotations_world.append(None)
return torch.stack(positions_world, dim=3).permute(0, 1, 3, 2)
# class SMPL_old(smplx.SMPLLayer):
# def __init__(self, *args, joint_regressor_extra: Optional[str] = None, update_hips: bool = False, **kwargs):
# """
# Extension of the official SMPL implementation to support more joints.
# Args:
# Same as SMPLLayer.
# joint_regressor_extra (str): Path to extra joint regressor.
# """
# super(SMPL, self).__init__(*args, **kwargs)
# smpl_to_openpose = [24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
# 7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]
# if joint_regressor_extra is not None:
# self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32))
# self.register_buffer('joint_map', torch.tensor(smpl_to_openpose, dtype=torch.long))
# self.update_hips = update_hips
# def forward(self, *args, **kwargs):
# """
# Run forward pass. Same as SMPL and also append an extra set of joints if joint_regressor_extra is specified.
# """
# smpl_output = super(SMPL, self).forward(*args, **kwargs)
# joints = smpl_output.joints[:, self.joint_map, :]
# if self.update_hips:
# joints[:,[9,12]] = joints[:,[9,12]] + \
# 0.25*(joints[:,[9,12]]-joints[:,[12,9]]) + \
# 0.5*(joints[:,[8]] - 0.5*(joints[:,[9,12]] + joints[:,[12,9]]))
# if hasattr(self, 'joint_regressor_extra'):
# extra_joints = vertices2joints(self.joint_regressor_extra, smpl_output.vertices)
# joints = torch.cat([joints, extra_joints], dim=1)
# smpl_output.joints = joints
# return smpl_output
# Map joints to SMPL joints
JOINT_MAP = {
'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
'Spine (H36M)': 51, 'Jaw (H36M)': 52,
'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
}
JOINT_NAMES = [
'OP Nose', 'OP Neck', 'OP RShoulder',
'OP RElbow', 'OP RWrist', 'OP LShoulder',
'OP LElbow', 'OP LWrist', 'OP MidHip',
'OP RHip', 'OP RKnee', 'OP RAnkle',
'OP LHip', 'OP LKnee', 'OP LAnkle',
'OP REye', 'OP LEye', 'OP REar',
'OP LEar', 'OP LBigToe', 'OP LSmallToe',
'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
'Right Ankle', 'Right Knee', 'Right Hip',
'Left Hip', 'Left Knee', 'Left Ankle',
'Right Wrist', 'Right Elbow', 'Right Shoulder',
'Left Shoulder', 'Left Elbow', 'Left Wrist',
'Neck (LSP)', 'Top of Head (LSP)',
'Pelvis (MPII)', 'Thorax (MPII)',
'Spine (H36M)', 'Jaw (H36M)',
'Head (H36M)', 'Nose', 'Left Eye',
'Right Eye', 'Left Ear', 'Right Ear'
]
BASE_DATA_DIR = "/data2/TSMC_data/base_data"
JOINT_IDS = {JOINT_NAMES[i]: i for i in range(len(JOINT_NAMES))}
JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(BASE_DATA_DIR, 'J_regressor_extra.npy')
SMPL_MEAN_PARAMS = os.path.join(BASE_DATA_DIR, 'smpl_mean_params.npz')
SMPL_MODEL_DIR = BASE_DATA_DIR
H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9]
H36M_TO_J14 = H36M_TO_J17[:14]
# class SMPL(_SMPL):
# """ Extension of the official SMPL implementation to support more joints """
# def __init__(self, *args, **kwargs):
# super(SMPL, self).__init__(*args, **kwargs)
# joints = [JOINT_MAP[i] for i in JOINT_NAMES]
# J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
# self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
# self.joint_map = torch.tensor(joints, dtype=torch.long)
# def forward(self, *args, **kwargs):
# kwargs['get_skin'] = True
# smpl_output = super(SMPL, self).forward(*args, **kwargs)
# extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
# joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
# joints = joints[:, self.joint_map, :]
# output = ModelOutput(vertices=smpl_output.vertices,
# global_orient=smpl_output.global_orient,
# body_pose=smpl_output.body_pose,
# joints=joints,
# betas=smpl_output.betas,
# full_pose=smpl_output.full_pose)
# return output
# def get_smpl_faces():
# print("Get SMPL faces")
# smpl = SMPL(SMPL_MODEL_DIR, batch_size=1, create_transl=False)
# return smpl.faces |