|
from typing import Tuple |
|
|
|
import numpy as np |
|
|
|
import utils.constants as constants |
|
import torch |
|
|
|
class HybrIKJointsToRotmat: |
|
def __init__(self): |
|
self.naive_hybrik = constants.SMPL_HYBRIK |
|
self.num_nodes = 22 |
|
self.parents = constants.SMPL_BODY_PARENTS |
|
self.child = constants.SMPL_BODY_CHILDS |
|
self.bones = np.array(constants.SMPL_BODY_BONES).reshape(24, 3)[ |
|
: self.num_nodes |
|
] |
|
|
|
def multi_child_rot( |
|
self, t: np.ndarray, p: np.ndarray, pose_global_parent: np.ndarray |
|
) -> Tuple[np.ndarray]: |
|
""" |
|
t: B x 3 x child_num |
|
p: B x 3 x child_num |
|
pose_global_parent: B x 3 x 3 |
|
""" |
|
m = np.matmul( |
|
t, np.transpose(np.matmul(np.linalg.inv(pose_global_parent), p), [0, 2, 1]) |
|
) |
|
u, s, vt = np.linalg.svd(m) |
|
r = np.matmul(np.transpose(vt, [0, 2, 1]), np.transpose(u, [0, 2, 1])) |
|
err_det_mask = (np.linalg.det(r) < 0.0).reshape(-1, 1, 1) |
|
id_fix = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]).reshape( |
|
1, 3, 3 |
|
) |
|
r_fix = np.matmul( |
|
np.transpose(vt, [0, 2, 1]), np.matmul(id_fix, np.transpose(u, [0, 2, 1])) |
|
) |
|
r = r * (1.0 - err_det_mask) + r_fix * err_det_mask |
|
return r, np.matmul(pose_global_parent, r) |
|
|
|
def single_child_rot( |
|
self, |
|
t: np.ndarray, |
|
p: np.ndarray, |
|
pose_global_parent: np.ndarray, |
|
twist: np.ndarray = None, |
|
) -> Tuple[np.ndarray]: |
|
""" |
|
t: B x 3 x 1 |
|
p: B x 3 x 1 |
|
pose_global_parent: B x 3 x 3 |
|
twist: B x 2 if given, default to None |
|
""" |
|
p_rot = np.matmul(np.linalg.inv(pose_global_parent), p) |
|
cross = np.cross(t, p_rot, axisa=1, axisb=1, axisc=1) |
|
sina = np.linalg.norm(cross, axis=1, keepdims=True) / ( |
|
np.linalg.norm(t, axis=1, keepdims=True) |
|
* np.linalg.norm(p_rot, axis=1, keepdims=True) |
|
) |
|
cross = cross / np.linalg.norm(cross, axis=1, keepdims=True) |
|
cosa = np.sum(t * p_rot, axis=1, keepdims=True) / ( |
|
np.linalg.norm(t, axis=1, keepdims=True) |
|
* np.linalg.norm(p_rot, axis=1, keepdims=True) |
|
) |
|
sina = sina.reshape(-1, 1, 1) |
|
cosa = cosa.reshape(-1, 1, 1) |
|
skew_sym_t = np.stack( |
|
[ |
|
0.0 * cross[:, 0], |
|
-cross[:, 2], |
|
cross[:, 1], |
|
cross[:, 2], |
|
0.0 * cross[:, 0], |
|
-cross[:, 0], |
|
-cross[:, 1], |
|
cross[:, 0], |
|
0.0 * cross[:, 0], |
|
], |
|
1, |
|
) |
|
skew_sym_t = skew_sym_t.reshape(-1, 3, 3) |
|
dsw_rotmat = ( |
|
np.eye(3).reshape(1, 3, 3) |
|
+ sina * skew_sym_t |
|
+ (1.0 - cosa) * np.matmul(skew_sym_t, skew_sym_t) |
|
) |
|
if twist is not None: |
|
skew_sym_t = np.stack( |
|
[ |
|
0.0 * t[:, 0], |
|
-t[:, 2], |
|
t[:, 1], |
|
t[:, 2], |
|
0.0 * t[:, 0], |
|
-t[:, 0], |
|
-t[:, 1], |
|
t[:, 0], |
|
0.0 * t[:, 0], |
|
], |
|
1, |
|
) |
|
skew_sym_t = skew_sym_t.reshape(-1, 3, 3) |
|
sina = twist[:, 1].reshape(-1, 1, 1) |
|
cosa = twist[:, 0].reshape(-1, 1, 1) |
|
dtw_rotmat = ( |
|
np.eye(3).reshape([1, 3, 3]) |
|
+ sina * skew_sym_t |
|
+ (1.0 - cosa) * np.matmul(skew_sym_t, skew_sym_t) |
|
) |
|
dsw_rotmat = np.matmul(dsw_rotmat, dtw_rotmat) |
|
return dsw_rotmat, np.matmul(pose_global_parent, dsw_rotmat) |
|
|
|
def __call__(self, joints: np.ndarray, twist: np.ndarray = None) -> np.ndarray: |
|
""" |
|
joints: B x N x 3 |
|
twist: B x N x 2 if given, default to None |
|
""" |
|
expand_dim = False |
|
if len(joints.shape) == 2: |
|
expand_dim = True |
|
joints = np.expand_dims(joints, 0) |
|
if twist is not None: |
|
twist = np.expand_dims(twist, 0) |
|
assert len(joints.shape) == 3 |
|
batch_size = np.shape(joints)[0] |
|
joints_rel = joints - joints[:, self.parents] |
|
joints_hybrik = 0.0 * joints_rel |
|
pose_global = np.zeros([batch_size, self.num_nodes, 3, 3]) |
|
pose = np.zeros([batch_size, self.num_nodes, 3, 3]) |
|
for i in range(self.num_nodes): |
|
if i == 0: |
|
joints_hybrik[:, 0] = joints[:, 0] |
|
else: |
|
joints_hybrik[:, i] = ( |
|
np.matmul( |
|
pose_global[:, self.parents[i]], |
|
self.bones[i].reshape(1, 3, 1), |
|
).reshape(-1, 3) |
|
+ joints_hybrik[:, self.parents[i]] |
|
) |
|
if self.child[i] == -2: |
|
pose[:, i] = pose[:, i] + np.eye(3).reshape(1, 3, 3) |
|
pose_global[:, i] = pose_global[:, self.parents[i]] |
|
continue |
|
if i == 0: |
|
r, rg = self.multi_child_rot( |
|
np.transpose(self.bones[[1, 2, 3]].reshape(1, 3, 3), [0, 2, 1]), |
|
np.transpose(joints_rel[:, [1, 2, 3]], [0, 2, 1]), |
|
np.eye(3).reshape(1, 3, 3), |
|
) |
|
|
|
elif i == 9: |
|
r, rg = self.multi_child_rot( |
|
np.transpose(self.bones[[12, 13, 14]].reshape(1, 3, 3), [0, 2, 1]), |
|
np.transpose(joints_rel[:, [12, 13, 14]], [0, 2, 1]), |
|
pose_global[:, self.parents[9]], |
|
) |
|
else: |
|
p = joints_rel[:, self.child[i]] |
|
if self.naive_hybrik[i] == 0: |
|
p = joints[:, self.child[i]] - joints_hybrik[:, i] |
|
twi = None |
|
if twist is not None: |
|
twi = twist[:, i] |
|
r, rg = self.single_child_rot( |
|
self.bones[self.child[i]].reshape(1, 3, 1), |
|
p.reshape(-1, 3, 1), |
|
pose_global[:, self.parents[i]], |
|
twi, |
|
) |
|
pose[:, i] = r |
|
pose_global[:, i] = rg |
|
if expand_dim: |
|
pose = pose[0] |
|
return pose |
|
|
|
class HybrIKJointsToRotmat_Tensor: |
|
def __init__(self): |
|
self.naive_hybrik = constants.SMPL_HYBRIK |
|
self.num_nodes = 22 |
|
self.parents = constants.SMPL_BODY_PARENTS |
|
self.child = constants.SMPL_BODY_CHILDS |
|
self.bones = torch.tensor(constants.SMPL_BODY_BONES).reshape(24, 3)[:self.num_nodes] |
|
|
|
def multi_child_rot(self, t, p, pose_global_parent): |
|
""" |
|
t: B x 3 x child_num |
|
p: B x 3 x child_num |
|
pose_global_parent: B x 3 x 3 |
|
""" |
|
m = torch.matmul( |
|
t, torch.transpose(torch.matmul(torch.inverse(pose_global_parent), p), 1, 2) |
|
) |
|
u, s, vt = torch.linalg.svd(m) |
|
r = torch.matmul(torch.transpose(vt, 1, 2), torch.transpose(u, 1, 2)) |
|
err_det_mask = (torch.det(r) < 0.0).reshape(-1, 1, 1) |
|
id_fix = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]]).reshape(1, 3, 3) |
|
r_fix = torch.matmul( |
|
torch.transpose(vt, 1, 2), torch.matmul(id_fix, torch.transpose(u, 1, 2)) |
|
) |
|
r = r * (~err_det_mask) + r_fix * err_det_mask |
|
return r, torch.matmul(pose_global_parent, r) |
|
|
|
def single_child_rot( |
|
self, |
|
t, |
|
p, |
|
pose_global_parent, |
|
twist = None, |
|
) -> Tuple[torch.Tensor]: |
|
""" |
|
t: B x 3 x 1 |
|
p: B x 3 x 1 |
|
pose_global_parent: B x 3 x 3 |
|
twist: B x 2 if given, default to None |
|
""" |
|
t_tensor = t.clone().detach() |
|
p_tensor = p.clone().detach() |
|
pose_global_parent_tensor = pose_global_parent.clone().detach() |
|
|
|
p_rot = torch.matmul(torch.linalg.inv(pose_global_parent_tensor), p_tensor) |
|
cross = torch.cross(t_tensor, p_rot, dim=1) |
|
sina = torch.linalg.norm(cross, dim=1, keepdim=True) / ( |
|
torch.linalg.norm(t_tensor, dim=1, keepdim=True) |
|
* torch.linalg.norm(p_rot, dim=1, keepdim=True) |
|
) |
|
cross = cross / torch.linalg.norm(cross, dim=1, keepdim=True) |
|
cosa = torch.sum(t_tensor * p_rot, dim=1, keepdim=True) / ( |
|
torch.linalg.norm(t_tensor, dim=1, keepdim=True) |
|
* torch.linalg.norm(p_rot, dim=1, keepdim=True) |
|
) |
|
sina = sina.reshape(-1, 1, 1) |
|
cosa = cosa.reshape(-1, 1, 1) |
|
skew_sym_t = torch.stack( |
|
[ |
|
0.0 * cross[:, 0], |
|
-cross[:, 2], |
|
cross[:, 1], |
|
cross[:, 2], |
|
0.0 * cross[:, 0], |
|
-cross[:, 0], |
|
-cross[:, 1], |
|
cross[:, 0], |
|
0.0 * cross[:, 0], |
|
], |
|
1, |
|
) |
|
skew_sym_t = skew_sym_t.reshape(-1, 3, 3) |
|
dsw_rotmat = ( |
|
torch.eye(3).reshape(1, 3, 3) |
|
+ sina * skew_sym_t |
|
+ (1.0 - cosa) * torch.matmul(skew_sym_t, skew_sym_t) |
|
) |
|
if twist is not None: |
|
twist_tensor = torch.tensor(twist) |
|
skew_sym_t = torch.stack( |
|
[ |
|
0.0 * t_tensor[:, 0], |
|
-t_tensor[:, 2], |
|
t_tensor[:, 1], |
|
t_tensor[:, 2], |
|
0.0 * t_tensor[:, 0], |
|
-t_tensor[:, 0], |
|
-t_tensor[:, 1], |
|
t_tensor[:, 0], |
|
0.0 * t_tensor[:, 0], |
|
], |
|
1, |
|
) |
|
skew_sym_t = skew_sym_t.reshape(-1, 3, 3) |
|
sina = twist_tensor[:, 1].reshape(-1, 1, 1) |
|
cosa = twist_tensor[:, 0].reshape(-1, 1, 1) |
|
dtw_rotmat = ( |
|
torch.eye(3).reshape([1, 3, 3]) |
|
+ sina * skew_sym_t |
|
+ (1.0 - cosa) * torch.matmul(skew_sym_t, skew_sym_t) |
|
) |
|
dsw_rotmat = torch.matmul(dsw_rotmat, dtw_rotmat) |
|
|
|
return dsw_rotmat, torch.matmul(pose_global_parent_tensor, dsw_rotmat) |
|
|
|
def __call__(self, joints, twist = None) -> torch.Tensor: |
|
""" |
|
joints: B x N x 3 |
|
twist: B x N x 2 if given, default to None |
|
""" |
|
expand_dim = False |
|
if len(joints.shape) == 2: |
|
expand_dim = True |
|
joints = joints.unsqueeze(0) |
|
if twist is not None: |
|
twist = twist.unsqueeze(0) |
|
assert len(joints.shape) == 3 |
|
batch_size = joints.shape[0] |
|
joints_rel = joints - joints[:, self.parents] |
|
joints_hybrik = torch.zeros_like(joints_rel) |
|
pose_global = torch.zeros([batch_size, self.num_nodes, 3, 3]) |
|
pose = torch.zeros([batch_size, self.num_nodes, 3, 3]) |
|
for i in range(self.num_nodes): |
|
if i == 0: |
|
joints_hybrik[:, 0] = joints[:, 0] |
|
else: |
|
joints_hybrik[:, i] = ( |
|
torch.matmul( |
|
pose_global[:, self.parents[i]], |
|
self.bones[i].reshape(1, 3, 1), |
|
).reshape(-1, 3) |
|
+ joints_hybrik[:, self.parents[i]] |
|
) |
|
if self.child[i] == -2: |
|
pose[:, i] = pose[:, i] + torch.eye(3).reshape(1, 3, 3) |
|
pose_global[:, i] = pose_global[:, self.parents[i]] |
|
continue |
|
if i == 0: |
|
t = self.bones[[1, 2, 3]].reshape(1, 3, 3).permute(0, 2, 1) |
|
p = joints_rel[:, [1, 2, 3]].permute(0, 2, 1) |
|
pose_global_parent = torch.eye(3).reshape(1, 3, 3) |
|
r, rg = self.multi_child_rot(t, p, pose_global_parent) |
|
elif i == 9: |
|
t = self.bones[[12, 13, 14]].reshape(1, 3, 3).permute(0, 2, 1) |
|
p = joints_rel[:, [12, 13, 14]].permute(0, 2, 1) |
|
r, rg = self.multi_child_rot(t, p, pose_global[:, self.parents[9]],) |
|
else: |
|
p = joints_rel[:, self.child[i]] |
|
if self.naive_hybrik[i] == 0: |
|
p = joints[:, self.child[i]] - joints_hybrik[:, i] |
|
twi = None |
|
if twist is not None: |
|
twi = twist[:, i] |
|
t = self.bones[self.child[i]].reshape(-1, 3, 1) |
|
p = p.reshape(-1, 3, 1) |
|
nframes, _, _ = p.shape |
|
t = t.repeat(nframes, 1, 1) |
|
r, rg = self.single_child_rot(t, p, pose_global[:, self.parents[i]], twi) |
|
pose[:, i] = r |
|
pose_global[:, i] = rg |
|
if expand_dim: |
|
pose = pose[0] |
|
return pose |
|
|
|
|
|
if __name__ == "__main__": |
|
jts2rot_hybrik = HybrIKJointsToRotmat_Tensor() |
|
joints = torch.tensor(constants.SMPL_BODY_BONES).reshape(1, 24, 3)[:, :22] |
|
parents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 12, 13, 14, 16, 17, 18, 19] |
|
for i in range(1, 22): |
|
joints[:, i] = joints[:, i] + joints[:, parents[i]] |
|
print(joints.shape) |
|
pose = jts2rot_hybrik(joints) |
|
print(pose.shape) |
|
|