|
import numpy as np |
|
from scipy import linalg |
|
|
|
def euclidean_distance_matrix(matrix1, matrix2): |
|
""" |
|
Params: |
|
-- matrix1: N1 x D |
|
-- matrix2: N2 x D |
|
Returns: |
|
-- dist: N1 x N2 |
|
dist[i, j] == distance(matrix1[i], matrix2[j]) |
|
""" |
|
assert matrix1.shape[1] == matrix2.shape[1] |
|
d1 = -2 * np.dot(matrix1, matrix2.T) |
|
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) |
|
d3 = np.sum(np.square(matrix2), axis=1) |
|
dists = np.sqrt(d1 + d2 + d3) |
|
return dists |
|
|
|
def calculate_top_k(mat, top_k): |
|
size = mat.shape[0] |
|
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1) |
|
bool_mat = (mat == gt_mat) |
|
correct_vec = False |
|
top_k_list = [] |
|
for i in range(top_k): |
|
correct_vec = (correct_vec | bool_mat[:, i]) |
|
top_k_list.append(correct_vec[:, None]) |
|
top_k_mat = np.concatenate(top_k_list, axis=1) |
|
return top_k_mat |
|
|
|
|
|
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False): |
|
dist_mat = euclidean_distance_matrix(embedding1, embedding2) |
|
argmax = np.argsort(dist_mat, axis=1) |
|
top_k_mat = calculate_top_k(argmax, top_k) |
|
if sum_all: |
|
return top_k_mat.sum(axis=0) |
|
else: |
|
return top_k_mat |
|
|
|
|
|
def calculate_matching_score(embedding1, embedding2, sum_all=False): |
|
assert len(embedding1.shape) == 2 |
|
assert embedding1.shape[0] == embedding2.shape[0] |
|
assert embedding1.shape[1] == embedding2.shape[1] |
|
|
|
dist = linalg.norm(embedding1 - embedding2, axis=1) |
|
if sum_all: |
|
return dist.sum(axis=0) |
|
else: |
|
return dist |
|
|
|
|
|
|
|
def calculate_activation_statistics(activations): |
|
""" |
|
Params: |
|
-- activation: num_samples x dim_feat |
|
Returns: |
|
-- mu: dim_feat |
|
-- sigma: dim_feat x dim_feat |
|
""" |
|
mu = np.mean(activations, axis=0) |
|
cov = np.cov(activations, rowvar=False) |
|
return mu, cov |
|
|
|
|
|
def calculate_diversity(activation, diversity_times): |
|
assert len(activation.shape) == 2 |
|
assert activation.shape[0] > diversity_times |
|
num_samples = activation.shape[0] |
|
|
|
first_indices = np.random.choice(num_samples, diversity_times, replace=False) |
|
second_indices = np.random.choice(num_samples, diversity_times, replace=False) |
|
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1) |
|
return dist.mean() |
|
|
|
|
|
def calculate_multimodality(activation, multimodality_times): |
|
assert len(activation.shape) == 3 |
|
assert activation.shape[1] > multimodality_times |
|
num_per_sent = activation.shape[1] |
|
|
|
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) |
|
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) |
|
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2) |
|
return dist.mean() |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert mu1.shape == mu2.shape, \ |
|
'Training and test mean vectors have different lengths' |
|
assert sigma1.shape == sigma2.shape, \ |
|
'Training and test covariances have different dimensions' |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ('fid calculation produces singular product; ' |
|
'adding %s to diagonal of cov estimates') % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError('Imaginary component {}'.format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return (diff.dot(diff) + np.trace(sigma1) + |
|
np.trace(sigma2) - 2 * tr_covmean) |