|
|
|
|
|
|
|
|
|
import functools |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
""" |
|
The transformation matrices returned from the functions in this file assume |
|
the points on which the transformation will be applied are column vectors. |
|
i.e. the R matrix is structured as |
|
|
|
R = [ |
|
[Rxx, Rxy, Rxz], |
|
[Ryx, Ryy, Ryz], |
|
[Rzx, Rzy, Rzz], |
|
] # (3, 3) |
|
|
|
This matrix can be applied to column vectors by post multiplication |
|
by the points e.g. |
|
|
|
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point |
|
transformed_points = R * points |
|
|
|
To apply the same matrix to points which are row vectors, the R matrix |
|
can be transposed and pre multiplied by the points: |
|
|
|
e.g. |
|
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point |
|
transformed_points = points * R.transpose(1, 0) |
|
""" |
|
|
|
|
|
def quaternion_to_matrix(quaternions): |
|
""" |
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
|
|
def _copysign(a, b): |
|
""" |
|
Return a tensor where each element has the absolute value taken from the, |
|
corresponding element of a, with sign taken from the corresponding |
|
element of b. This is like the standard copysign floating-point operation, |
|
but is not careful about negative 0 and NaN. |
|
|
|
Args: |
|
a: source tensor. |
|
b: tensor whose signs will be used, of the same shape as a. |
|
|
|
Returns: |
|
Tensor of the same shape as a with the signs of b. |
|
""" |
|
signs_differ = (a < 0) != (b < 0) |
|
return torch.where(signs_differ, -a, a) |
|
|
|
|
|
def _sqrt_positive_part(x): |
|
""" |
|
Returns torch.sqrt(torch.max(0, x)) |
|
but with a zero subgradient where x is 0. |
|
""" |
|
ret = torch.zeros_like(x) |
|
positive_mask = x > 0 |
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
return ret |
|
|
|
|
|
def matrix_to_quaternion(matrix): |
|
""" |
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
|
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") |
|
m00 = matrix[..., 0, 0] |
|
m11 = matrix[..., 1, 1] |
|
m22 = matrix[..., 2, 2] |
|
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) |
|
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) |
|
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) |
|
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) |
|
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) |
|
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) |
|
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) |
|
return torch.stack((o0, o1, o2, o3), -1) |
|
|
|
|
|
def _axis_angle_rotation(axis: str, angle): |
|
""" |
|
Return the rotation matrices for one of the rotations about an axis |
|
of which Euler angles describe, for each value of the angle given. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z". |
|
angle: any shape tensor of Euler angles in radians |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
|
|
cos = torch.cos(angle) |
|
sin = torch.sin(angle) |
|
one = torch.ones_like(angle) |
|
zero = torch.zeros_like(angle) |
|
|
|
if axis == "X": |
|
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) |
|
if axis == "Y": |
|
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) |
|
if axis == "Z": |
|
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) |
|
|
|
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) |
|
|
|
|
|
def euler_angles_to_matrix(euler_angles, convention: str): |
|
""" |
|
Convert rotations given as Euler angles in radians to rotation matrices. |
|
|
|
Args: |
|
euler_angles: Euler angles in radians as tensor of shape (..., 3). |
|
convention: Convention string of three uppercase letters from |
|
{"X", "Y", and "Z"}. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: |
|
raise ValueError("Invalid input euler angles.") |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) |
|
return functools.reduce(torch.matmul, matrices) |
|
|
|
|
|
def _angle_from_tan( |
|
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool |
|
): |
|
""" |
|
Extract the first or third Euler angle from the two members of |
|
the matrix which are positive constant times its sine and cosine. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z" for the angle we are finding. |
|
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the |
|
convention. |
|
data: Rotation matrices as tensor of shape (..., 3, 3). |
|
horizontal: Whether we are looking for the angle for the third axis, |
|
which means the relevant entries are in the same row of the |
|
rotation matrix. If not, they are in the same column. |
|
tait_bryan: Whether the first and third axes in the convention differ. |
|
|
|
Returns: |
|
Euler Angles in radians for each matrix in dataset as a tensor |
|
of shape (...). |
|
""" |
|
|
|
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] |
|
if horizontal: |
|
i2, i1 = i1, i2 |
|
even = (axis + other_axis) in ["XY", "YZ", "ZX"] |
|
if horizontal == even: |
|
return torch.atan2(data[..., i1], data[..., i2]) |
|
if tait_bryan: |
|
return torch.atan2(-data[..., i2], data[..., i1]) |
|
return torch.atan2(data[..., i2], -data[..., i1]) |
|
|
|
|
|
def _index_from_letter(letter: str): |
|
if letter == "X": |
|
return 0 |
|
if letter == "Y": |
|
return 1 |
|
if letter == "Z": |
|
return 2 |
|
|
|
|
|
def matrix_to_euler_angles(matrix, convention: str): |
|
""" |
|
Convert rotations given as rotation matrices to Euler angles in radians. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
convention: Convention string of three uppercase letters. |
|
|
|
Returns: |
|
Euler angles in radians as tensor of shape (..., 3). |
|
""" |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") |
|
i0 = _index_from_letter(convention[0]) |
|
i2 = _index_from_letter(convention[2]) |
|
tait_bryan = i0 != i2 |
|
if tait_bryan: |
|
central_angle = torch.asin( |
|
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) |
|
) |
|
else: |
|
central_angle = torch.acos(matrix[..., i0, i0]) |
|
|
|
o = ( |
|
_angle_from_tan( |
|
convention[0], convention[1], matrix[..., i2], False, tait_bryan |
|
), |
|
central_angle, |
|
_angle_from_tan( |
|
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan |
|
), |
|
) |
|
return torch.stack(o, -1) |
|
|
|
|
|
def random_quaternions( |
|
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
): |
|
""" |
|
Generate random quaternions representing rotations, |
|
i.e. versors with nonnegative real part. |
|
|
|
Args: |
|
n: Number of quaternions in a batch to return. |
|
dtype: Type to return. |
|
device: Desired device of returned tensor. Default: |
|
uses the current device for the default tensor type. |
|
requires_grad: Whether the resulting tensor should have the gradient |
|
flag set. |
|
|
|
Returns: |
|
Quaternions as tensor of shape (N, 4). |
|
""" |
|
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) |
|
s = (o * o).sum(1) |
|
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] |
|
return o |
|
|
|
|
|
def random_rotations( |
|
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
): |
|
""" |
|
Generate random rotations as 3x3 rotation matrices. |
|
|
|
Args: |
|
n: Number of rotation matrices in a batch to return. |
|
dtype: Type to return. |
|
device: Device of returned tensor. Default: if None, |
|
uses the current device for the default tensor type. |
|
requires_grad: Whether the resulting tensor should have the gradient |
|
flag set. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (n, 3, 3). |
|
""" |
|
quaternions = random_quaternions( |
|
n, dtype=dtype, device=device, requires_grad=requires_grad |
|
) |
|
return quaternion_to_matrix(quaternions) |
|
|
|
|
|
def random_rotation( |
|
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False |
|
): |
|
""" |
|
Generate a single random 3x3 rotation matrix. |
|
|
|
Args: |
|
dtype: Type to return |
|
device: Device of returned tensor. Default: if None, |
|
uses the current device for the default tensor type |
|
requires_grad: Whether the resulting tensor should have the gradient |
|
flag set |
|
|
|
Returns: |
|
Rotation matrix as tensor of shape (3, 3). |
|
""" |
|
return random_rotations(1, dtype, device, requires_grad)[0] |
|
|
|
|
|
def standardize_quaternion(quaternions): |
|
""" |
|
Convert a unit quaternion to a standard form: one in which the real |
|
part is non negative. |
|
|
|
Args: |
|
quaternions: Quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Standardized quaternions as tensor of shape (..., 4). |
|
""" |
|
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) |
|
|
|
|
|
def quaternion_raw_multiply(a, b): |
|
""" |
|
Multiply two quaternions. |
|
Usual torch rules for broadcasting apply. |
|
|
|
Args: |
|
a: Quaternions as tensor of shape (..., 4), real part first. |
|
b: Quaternions as tensor of shape (..., 4), real part first. |
|
|
|
Returns: |
|
The product of a and b, a tensor of quaternions shape (..., 4). |
|
""" |
|
aw, ax, ay, az = torch.unbind(a, -1) |
|
bw, bx, by, bz = torch.unbind(b, -1) |
|
ow = aw * bw - ax * bx - ay * by - az * bz |
|
ox = aw * bx + ax * bw + ay * bz - az * by |
|
oy = aw * by - ax * bz + ay * bw + az * bx |
|
oz = aw * bz + ax * by - ay * bx + az * bw |
|
return torch.stack((ow, ox, oy, oz), -1) |
|
|
|
|
|
def quaternion_multiply(a, b): |
|
""" |
|
Multiply two quaternions representing rotations, returning the quaternion |
|
representing their composition, i.e. the versor with nonnegative real part. |
|
Usual torch rules for broadcasting apply. |
|
|
|
Args: |
|
a: Quaternions as tensor of shape (..., 4), real part first. |
|
b: Quaternions as tensor of shape (..., 4), real part first. |
|
|
|
Returns: |
|
The product of a and b, a tensor of quaternions of shape (..., 4). |
|
""" |
|
ab = quaternion_raw_multiply(a, b) |
|
return standardize_quaternion(ab) |
|
|
|
|
|
def quaternion_invert(quaternion): |
|
""" |
|
Given a quaternion representing rotation, get the quaternion representing |
|
its inverse. |
|
|
|
Args: |
|
quaternion: Quaternions as tensor of shape (..., 4), with real part |
|
first, which must be versors (unit quaternions). |
|
|
|
Returns: |
|
The inverse, a tensor of quaternions of shape (..., 4). |
|
""" |
|
|
|
return quaternion * quaternion.new_tensor([1, -1, -1, -1]) |
|
|
|
|
|
def quaternion_apply(quaternion, point): |
|
""" |
|
Apply the rotation given by a quaternion to a 3D point. |
|
Usual torch rules for broadcasting apply. |
|
|
|
Args: |
|
quaternion: Tensor of quaternions, real part first, of shape (..., 4). |
|
point: Tensor of 3D points of shape (..., 3). |
|
|
|
Returns: |
|
Tensor of rotated points of shape (..., 3). |
|
""" |
|
if point.size(-1) != 3: |
|
raise ValueError(f"Points are not in 3D, f{point.shape}.") |
|
real_parts = point.new_zeros(point.shape[:-1] + (1,)) |
|
point_as_quaternion = torch.cat((real_parts, point), -1) |
|
out = quaternion_raw_multiply( |
|
quaternion_raw_multiply(quaternion, point_as_quaternion), |
|
quaternion_invert(quaternion), |
|
) |
|
return out[..., 1:] |
|
|
|
|
|
def axis_angle_to_matrix(axis_angle): |
|
""" |
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
|
|
def matrix_to_axis_angle(matrix): |
|
""" |
|
Convert rotations given as rotation matrices to axis/angle. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) |
|
|
|
|
|
def axis_angle_to_quaternion(axis_angle): |
|
""" |
|
Convert rotations given as axis/angle to quaternions. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
half_angles = 0.5 * angles |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
) |
|
quaternions = torch.cat( |
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
) |
|
return quaternions |
|
|
|
|
|
def quaternion_to_axis_angle(quaternions): |
|
""" |
|
Convert rotations given as quaternions to axis/angle. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) |
|
half_angles = torch.atan2(norms, quaternions[..., :1]) |
|
angles = 2 * half_angles |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
) |
|
return quaternions[..., 1:] / sin_half_angles_over_angles |
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix |
|
using Gram--Schmidt orthogonalisation per Section B of [1]. |
|
Args: |
|
d6: 6D rotation representation, of size (*, 6) |
|
|
|
Returns: |
|
batch of rotation matrices of size (*, 3, 3) |
|
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
On the Continuity of Rotation Representations in Neural Networks. |
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
""" |
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
b1 = F.normalize(a1, dim=-1) |
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
b2 = F.normalize(b2, dim=-1) |
|
b3 = torch.cross(b1, b2, dim=-1) |
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] |
|
by dropping the last row. Note that 6D representation is not unique. |
|
Args: |
|
matrix: batch of rotation matrices of size (*, 3, 3) |
|
|
|
Returns: |
|
6D rotation representation, of size (*, 6) |
|
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
On the Continuity of Rotation Representations in Neural Networks. |
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
""" |
|
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6) |
|
|
|
def axis_angle_to_rotation_6d(axis_angle): |
|
matrix = axis_angle_to_matrix(axis_angle) |
|
return matrix_to_rotation_6d(matrix) |
|
|
|
def rotateXYZ(mesh_v, Rxyz): |
|
for rot in Rxyz: |
|
angle = np.radians(rot[0]) |
|
rx = np.array([ |
|
[1., 0., 0. ], |
|
[0., np.cos(angle), -np.sin(angle)], |
|
[0., np.sin(angle), np.cos(angle) ] |
|
]) |
|
|
|
angle = np.radians(rot[1]) |
|
ry = np.array([ |
|
[np.cos(angle), 0., np.sin(angle)], |
|
[0., 1., 0. ], |
|
[-np.sin(angle), 0., np.cos(angle)] |
|
]) |
|
|
|
angle = np.radians(rot[2]) |
|
rz = np.array([ |
|
[np.cos(angle), -np.sin(angle), 0. ], |
|
[np.sin(angle), np.cos(angle), 0. ], |
|
[0., 0., 1. ] |
|
]) |
|
|
|
mesh_v = rz.dot(ry.dot(rx.dot(mesh_v.T))).T |
|
|
|
return mesh_v |
|
|
|
def rotate_trans(trans_3d, rot_body=None): |
|
if rot_body is not None: |
|
trans_3d = rotateXYZ(trans_3d, rot_body) |
|
trans_3d = torch.from_numpy(trans_3d) |
|
return trans_3d |
|
|
|
def rotate_root(pose_6d, rot_body=None): |
|
root_6d = pose_6d[:, :6] |
|
root_6d = rotation_6d_to_matrix(root_6d) |
|
if rot_body is not None: |
|
root_6d = rotateXYZ(root_6d, rot_body) |
|
root_6d = torch.from_numpy(root_6d) |
|
root_6d = matrix_to_rotation_6d(root_6d) |
|
pose_6d[:, :6] = root_6d |
|
return pose_6d |
|
|