File size: 12,037 Bytes
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# coding=utf-8
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OPT model configuration"""
import os
from typing import Tuple, Union

from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

OPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/opt-125m": "https://huggingface.co/facebook/opt-125m/blob/main/config.json",
    "facebook/opt-350m": "https://huggingface.co/facebook/opt-350m/blob/main/config.json",
    "facebook/opt-1.3b": "https://huggingface.co/facebook/opt-1.3b/blob/main/config.json",
    "facebook/opt-2.7b": "https://huggingface.co/facebook/opt-2.7b/blob/main/config.json",
    "facebook/opt-6.7b": "https://huggingface.co/facebook/opt-6.7b/blob/main/config.json",
    "facebook/opt-13b": "https://huggingface.co/facebook/opt-13b/blob/main/config.json",
}


class VOPTConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the OPT
    [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    TODO: this doc is completely out of sync with the actual args

    Args:
        vocab_size (`int`, *optional*, defaults to 50272):
            Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`OPTModel`]
        additional_vocab_size (`int`, *optional`, defaults to 0):
            Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
            are always trainable whereas regular vocab tokens can be frozen or not.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        do_layer_norm_before (`bool`, *optional*, defaults to `True`):
            Whether to perform layer normalization before the attention block.
        word_embed_proj_dim (`int`, *optional*):
            `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
            `hidden_size`.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        layerdrop: (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        alpha_initializer (`str`, *optional*, defaults to `"ones"`):
            Initialization type for the alphas.
        alphas_initializer_range (`float`, *optional*, defaults to 0.0):
            The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention.
        alpha_type (`str`, *optional*, defaults to `"vector"`):
            Whether the gating alphas should be vectors or single floats.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        cross_layer_interval (`int`, *optional*, default to 1)
            Interval for cross attention (from text to image) layers.
    Example:

    ```python
    >>> from transformers import OPTModel, OPTConfig

    >>> # Initializing a OPT facebook/opt-large style configuration
    >>> configuration = OPTConfig()

    >>> # Initializing a model from the facebook/opt-large style configuration
    >>> model = OPTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "vopt"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=50272,
        additional_vocab_size=0,
        hidden_size=768,
        num_hidden_layers=12,
        ffn_dim=3072,
        max_position_embeddings=2048,
        do_layer_norm_before=True,
        _remove_final_layer_norm=False,
        word_embed_proj_dim=None,
        dropout=0.1,
        attention_dropout=0.0,
        num_attention_heads=12,
        activation_function="relu",
        layerdrop=0.0,
        init_std=0.02,
        alpha_initializer="ones",
        alphas_initializer_range=0.0,
        alpha_type="vector",
        use_cache=True,
        pad_token_id=1,
        bos_token_id=2,
        eos_token_id=2,
        cross_layer_interval=1,
        cross_layer_activation_function="swiglu",
        normformer_layer_norms=False,
        qk_layer_norms=False,
        rms_norm=False,
        qk_layer_norms_perceiver=False,
        tie_word_embeddings=False,
        freeze_text_layers=True,
        freeze_text_module_exceptions=[],
        freeze_lm_head=False,
        freeze_vision_layers=True,
        freeze_vision_module_exceptions=[],
        vision_model_name="google/vit-base-patch16-224",
        vision_model_params="{}",
        vision_embed_dim=768,
        vision_image_size=224,
        image_token_index=50257,  # TODO: change this to right value
        use_resampler=False,
        resampler_n_latents=64,
        resampler_depth=6,
        resampler_n_heads=16,
        resampler_head_dim=96,
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.additional_vocab_size = additional_vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.num_attention_heads = num_attention_heads
        self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
        self.ffn_dim = ffn_dim
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.alpha_initializer = alpha_initializer
        self.alphas_initializer_range = alphas_initializer_range
        self.alpha_type = alpha_type
        self.layerdrop = layerdrop
        self.use_cache = use_cache
        self.do_layer_norm_before = do_layer_norm_before

        # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        self._remove_final_layer_norm = _remove_final_layer_norm

        self.cross_layer_interval = cross_layer_interval
        self.cross_layer_activation_function = cross_layer_activation_function
        self.normformer_layer_norms = normformer_layer_norms
        self.qk_layer_norms = qk_layer_norms
        self.rms_norm = rms_norm
        self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
        self.freeze_vision_layers = freeze_vision_layers
        self.vision_model_name = vision_model_name
        self.vision_model_params = vision_model_params

        self.tie_word_embeddings = tie_word_embeddings
        self.freeze_text_layers = freeze_text_layers
        self.freeze_text_module_exceptions = freeze_text_module_exceptions
        self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
        self.freeze_lm_head = freeze_lm_head
        self.image_token_index = image_token_index

        self.vision_embed_dim = vision_embed_dim
        self.vision_image_size = vision_image_size

        # Resampler params
        self.use_resampler = use_resampler
        self.resampler_n_latents = resampler_n_latents
        self.resampler_depth = resampler_depth
        self.resampler_n_heads = resampler_n_heads
        self.resampler_head_dim = resampler_head_dim

        # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
        # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
        # updates the config object with `kwargs` from from_pretrained, so during the instantiation
        # of this object many attributes have default values and haven't yet been overridden.
        # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.

    def check_compatibilities(self):
        vision_model_params = eval(self.vision_model_params)
        config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
        if hasattr(config, "vision_config"):
            vision_config = config.vision_config
        else:
            vision_config = config
        vision_embed_dim = vision_config.hidden_size
        if self.vision_embed_dim != vision_embed_dim:
            raise ValueError(
                f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
                f" ({vision_embed_dim})"
            )
        vision_image_size = vision_config.image_size
        if self.vision_image_size != vision_image_size:
            raise ValueError(
                f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model"
                f" ({vision_image_size})"
            )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        outputs = super(VOPTConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
        if isinstance(outputs, Tuple):
            # When called with return_unused_kwargs=True, the first item will be the config
            outputs[0].check_compatibilities()
        else:
            outputs.check_compatibilities()
        return outputs