Spaces:
Build error
Build error
File size: 12,038 Bytes
e7d3e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import logging
import random
import webdataset as wds
from webdataset.tariterators import group_by_keys, tar_file_expander, url_opener
from m4.training.types import DatasetTypes
meta_prefix = "__"
meta_suffix = "__"
logger = logging.getLogger(__name__)
trace = False
def webdoc_valid_sample(sample):
"""Check whether a sample is valid.
:param sample: sample to be checked
"""
return (
sample is not None
and isinstance(sample, dict)
and len(list(sample.keys())) > 0
and not sample.get("__bad__", False)
and sample_has_all_files(sample)
)
def sample_has_all_files(current_sample):
meta = current_sample.get("metadata.value", None)
if meta is None:
return False
meta = meta.decode("utf-8")
if len(meta) == 0:
return False
target_file_list = meta.split("\n")
fname_keys = [key for key in current_sample.keys() if key.endswith(".fname")]
fnames = [current_sample[key] for key in fname_keys]
check = all([fname in fnames for fname in target_file_list])
if not check:
return False
return True
class ImageDecoder:
def __call__(self, bytes_):
import io
import PIL.Image
img = PIL.Image.open(io.BytesIO(bytes_))
img.load()
return img
# Taken from https://github.com/mlfoundations/open_clip/blob/c48111dacac55db24878af229d8a5662c03e6f1c/src/training/data.py#L180-L183
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, issue a warning, and continue."""
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
# Adapt group_by_keys to our webdocument format in which each samples contains several text and image files
# https://github.com/webdataset/webdataset/blob/039d74319ae55e5696dcef89829be9671802cf70/webdataset/tariterators.py#L195-L250
def group_by_keys_interleaved(data, handler=log_and_continue):
"""Return function over iterator that groups key, value pairs into samples."""
current_sample = None
for filesample in data:
try:
assert isinstance(filesample, dict)
fname, value = filesample["fname"], filesample["data"]
fname = fname.strip("./")
if fname.endswith(".metadata.txt"):
prefix, data_type, extension = fname.split(".")
suffix = data_type
else:
prefix, idx, data_type, extension = fname.split(".")
if data_type not in ["text", "image"]:
raise ValueError(f"{fname}: unknown data type {data_type}")
suffix = idx
if trace:
print(
f"prefix: {prefix}, idx: {idx}, data_type: {data_type}, extension: {extension}, keys:"
f" {current_sample.keys() if isinstance(current_sample, dict) else None}"
)
if prefix is None:
continue
if current_sample is None or prefix != current_sample["__key__"]:
valid = webdoc_valid_sample(current_sample)
if valid:
yield current_sample
elif current_sample is not None:
logging.warning(f"{fname}: invalid sample {current_sample} ignored")
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if suffix in current_sample:
raise ValueError(f"{fname}: duplicate file name in tar file {suffix} {current_sample.keys()}")
current_sample[f"{suffix}.value"] = value
current_sample[f"{suffix}.type"] = data_type
current_sample[f"{suffix}.fname"] = fname
except Exception as exn:
exn.args = exn.args + (filesample.get("stream"), filesample.get("url"))
if handler(exn):
continue
else:
break
if webdoc_valid_sample(current_sample):
yield current_sample
def _tarfile_to_webdocument_samples(src, handler=log_and_continue):
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_interleaved(files, handler=handler)
return samples
tarfile_to_webdocument_samples = wds.filters.pipelinefilter(_tarfile_to_webdocument_samples)
def _collate_texts_and_images_webdocument(data, handler=log_and_continue):
for sample in data:
try:
max_example_indices = max(
[int(key.split(".")[0]) for key in sample.keys() if key.endswith(".value") and key != "metadata.value"]
)
texts = [None for _ in range(max_example_indices + 1)]
images = [None for _ in range(max_example_indices + 1)]
for idx in range(max_example_indices + 1):
if f"{idx}.value" not in sample:
continue
if "text" in sample[f"{idx}.type"]:
texts[idx] = sample[f"{idx}.value"]
elif "image" in sample[f"{idx}.type"]:
images[idx] = sample[f"{idx}.value"]
else:
raise ValueError(f"Unknown data type: {sample[f'{idx}.type']}")
example = {"__key__": sample["__key__"], "__url__": sample["__url__"], "texts": texts, "images": images}
yield example
except Exception as exn:
exn.args = exn.args + (sample.get("stream"), sample.get("url"))
if handler(exn):
continue
else:
break
collate_texts_and_images_webdocument = wds.filters.pipelinefilter(_collate_texts_and_images_webdocument)
def _decode_image_and_text_webdocument(data, handler=log_and_continue):
image_decoder = ImageDecoder()
for sample in data:
try:
sample["images"] = [image_decoder(image) if image is not None else None for image in sample["images"]]
sample["texts"] = [text.decode("utf-8") if text is not None else None for text in sample["texts"]]
yield sample
except Exception as exn:
exn.args = exn.args + (sample.get("stream"), sample.get("url"))
if handler(exn):
continue
else:
break
decode_image_and_text_webdocument = wds.filters.pipelinefilter(_decode_image_and_text_webdocument)
def collate_dicts(samples):
keys = samples[0].keys()
batched_samples = {key: [sample[key] for sample in samples] for key in keys}
return batched_samples
def get_webdocuments_webdataset(
urls,
batch_size,
shuffle_initial_urls_list=False,
shuffle_before_split_by_node_buffer_size=100,
shuffle_before_split_by_worker_buffer_size=100,
shuffle_after_tarfile_to_samples_buffer_size=100,
shuffle_after_batching_buffer_size=1000,
):
if shuffle_initial_urls_list:
random.shuffle(urls)
pipeline_list = [wds.SimpleShardList(urls)]
if shuffle_before_split_by_node_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_before_split_by_node_buffer_size))
pipeline_list.append(wds.split_by_node)
if shuffle_before_split_by_worker_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_before_split_by_worker_buffer_size))
pipeline_list.extend(
[
wds.split_by_worker,
tarfile_to_webdocument_samples(),
]
)
if shuffle_after_tarfile_to_samples_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_after_tarfile_to_samples_buffer_size))
pipeline_list.extend(
[
collate_texts_and_images_webdocument(),
decode_image_and_text_webdocument(),
wds.batched(batch_size, collation_fn=collate_dicts, partial=True),
]
)
if shuffle_after_batching_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_after_batching_buffer_size))
dataset = wds.DataPipeline(pipeline_list)
return dataset
def split_keep_2(x):
x = x.strip("./")
x_splitter = x.split(".")
return x_splitter[0], x_splitter[1]
def _tarfile_to_pair_samples(src, handler=log_and_continue):
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys(files, keys=split_keep_2, handler=handler)
return samples
tarfile_to_pair_samples = wds.filters.pipelinefilter(_tarfile_to_pair_samples)
def _decode_image_and_text_pairs(data, handler=log_and_continue):
image_decoder = ImageDecoder()
for sample in data:
try:
sample["image"] = image_decoder(sample["image"])
sample["text"] = sample["text"].decode("utf-8")
yield sample
except Exception as exn:
exn.args = exn.args + (sample.get("stream"), sample.get("url"))
if handler(exn):
continue
else:
break
decode_image_and_text_pairs = wds.filters.pipelinefilter(_decode_image_and_text_pairs)
def get_image_caption_pairs_webdataset(
urls,
batch_size,
shuffle_initial_urls_list=False,
shuffle_before_split_by_node_buffer_size=100,
shuffle_before_split_by_worker_buffer_size=100,
shuffle_after_tarfile_to_samples_buffer_size=100,
shuffle_after_batching_buffer_size=1000,
):
if shuffle_initial_urls_list:
random.shuffle(urls)
pipeline_list = [wds.SimpleShardList(urls)]
if shuffle_before_split_by_node_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_before_split_by_node_buffer_size))
pipeline_list.append(wds.split_by_node)
if shuffle_before_split_by_worker_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_before_split_by_worker_buffer_size))
pipeline_list.extend(
[
wds.split_by_worker,
tarfile_to_pair_samples(handler=log_and_continue),
]
)
if shuffle_after_tarfile_to_samples_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_after_tarfile_to_samples_buffer_size))
pipeline_list.extend(
[
decode_image_and_text_pairs(),
wds.batched(batch_size, collation_fn=collate_dicts, partial=True), # todo: check if partial is needed
]
)
if shuffle_after_batching_buffer_size is not None:
pipeline_list.append(wds.shuffle(shuffle_after_batching_buffer_size))
dataset = wds.DataPipeline(pipeline_list)
return dataset
def get_webdataset(
urls,
ds_type: DatasetTypes,
batch_size: int,
shuffle_initial_urls_list,
shuffle_before_split_by_node_buffer_size,
shuffle_before_split_by_worker_buffer_size,
shuffle_after_tarfile_to_samples_buffer_size,
shuffle_after_batching_buffer_size,
):
if ds_type == DatasetTypes.WEB_DOCUMENTS:
return get_webdocuments_webdataset(
urls,
batch_size,
shuffle_initial_urls_list,
shuffle_before_split_by_node_buffer_size,
shuffle_before_split_by_worker_buffer_size,
shuffle_after_tarfile_to_samples_buffer_size,
shuffle_after_batching_buffer_size,
)
elif ds_type == DatasetTypes.IMAGE_CAPTION_PAIRS:
return get_image_caption_pairs_webdataset(
urls,
batch_size,
shuffle_initial_urls_list,
shuffle_before_split_by_node_buffer_size,
shuffle_before_split_by_worker_buffer_size,
shuffle_after_tarfile_to_samples_buffer_size,
shuffle_after_batching_buffer_size,
)
else:
raise ValueError(f"Unknown dataset type: {ds_type}")
def check_webdataset_command(command):
if "s3:/" not in command:
return True
command = command.strip()
if not command.startswith("pipe:bash"):
return False
if not command.endswith(".tar"):
return False
if "get_file.sh" not in command:
return False
return True
|