File size: 30,518 Bytes
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import logging
import os
import re
import time
from io import BytesIO

import gradio as gr
import requests
import torch
import transformers
from accelerate.utils import get_max_memory
from joblib import Parallel, delayed
from PIL import Image
from transformers import AutoTokenizer

from m4.models.vbloom import configuration_vbloom, modeling_vbloom
from m4.models.vgpt2 import configuration_vgpt2, modeling_vgpt2
from m4.models.vgpt_neo import configuration_vgpt_neo, modeling_vgpt_neo
from m4.models.vllama import configuration_vllama, modeling_vllama
from m4.models.vopt import configuration_vopt, modeling_vopt
from m4.training.packing import image_attention_mask_for_packed_input_ids, incremental_to_binary_attention_mask
from m4.training.utils import build_image_transform


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()

CURRENT_MODEL = "<replace_model>"
# CURRENT_MODEL = "tr_177_4datasets_alpha_baseline_opt_step-2000"

MAX_TRIES = 3
TOKENIZER_FAST = True
MAX_SEQ_LEN = 1024
model, tokenizer = None, None


MODEL_TO_DISPLAY_NAME = {
    "tr_199_w_xattn_opt_step-65000": "VLlama - tr_199_w_xattn_opt_step-65000",
    # "tr_201_sft_on_lrv_opt_step-15000": "VLlama - tr_201_sft_on_lrv_opt_step-15000",
    # "tr_202bis_ift_llava_all_unfrozen_opt_step-14128": "VLlama - tr_202bis_ift_llava_all_unfrozen_opt_step-14128",
    # "tr_203_ift_m3it_opt_step-50000": "VLlama - tr_203_ift_m3it_opt_step-50000",
    # "tr_205_sft_ultrachat_opt_step-20000": "VLlama - tr_205_sft_ultrachat_opt_step-20000",
    # "tr_207_ift_svit_opt_step-14627": "VLlama - tr_207_ift_svit_opt_step-14627",
    "tr_209_ift_mixture_opt_step-14000": "VLlama - tr_209_ift_mixture_opt_step-14000",
}
MODEL_TO_MODEL_CLASS = {
    "tr_199_w_xattn_opt_step-65000": "VLlamaForCausalLM",
    # "tr_201_sft_on_lrv_opt_step-15000": "VLlamaForCausalLM",
    # "tr_202bis_ift_llava_all_unfrozen_opt_step-14128": "VLlamaForCausalLM",
    # "tr_203_ift_m3it_opt_step-50000": "VLlamaForCausalLM",
    # "tr_205_sft_ultrachat_opt_step-20000": "VLlamaForCausalLM",
    # "tr_207_ift_svit_opt_step-14627": "VLlamaForCausalLM",
    "tr_209_ift_mixture_opt_step-14000": "VLlamaForCausalLM",
}

MODEL_TO_CONFIG_CLASS = {
    "tr_199_w_xattn_opt_step-65000": "VLlamaConfig",
    # "tr_201_sft_on_lrv_opt_step-15000": "VLlamaConfig",
    # "tr_202bis_ift_llava_all_unfrozen_opt_step-14128": "VLlamaConfig",
    # "tr_203_ift_m3it_opt_step-50000": "VLlamaConfig",
    # "tr_205_sft_ultrachat_opt_step-20000": "VLlamaConfig",
    # "tr_207_ift_svit_opt_step-14627": "VLlamaConfig",
    "tr_209_ift_mixture_opt_step-14000": "VLlamaConfig",
}


def load_tokenizer_model(model_name, model_class):
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        use_fast=TOKENIZER_FAST,
        use_auth_token=os.getenv("HF_AUTH_TOKEN", True),  # `use_fast=False` for 1B3 OPT, True for all the other models
    )
    tokenizer.padding_side = "left"
    config_class = MODEL_TO_CONFIG_CLASS[model_name.split("/")[-1]]

    # assert tokenizer.is_fast

    supported_custom_modules = {
        "vgpt2": modeling_vgpt2,
        "vbloom": modeling_vbloom,
        "vgptneo": modeling_vgpt_neo,
        "vopt": modeling_vopt,
        "vllama": modeling_vllama,
    }
    supported_custom_configs = {
        "vgpt2": configuration_vgpt2,
        "vbloom": configuration_vbloom,
        "vgptneo": configuration_vgpt_neo,
        "vopt": configuration_vopt,
        "vllama": configuration_vllama,
    }
    parent_config_class = (
        [v for k, v in supported_custom_configs.items() if k in model_class.lower()] + [transformers]
    )[0]
    parent_model_class = (
        [v for k, v in supported_custom_modules.items() if k in model_class.lower()] + [transformers]
    )[0]
    config_class = getattr(parent_config_class, config_class)
    model_class = getattr(parent_model_class, model_class)
    config = config_class.from_pretrained(model_name, use_auth_token=os.getenv("HF_AUTH_TOKEN", True))
    max_memory_map = get_max_memory()
    for key in max_memory_map.keys():
        if key != "cpu":
            # Get this in GB
            max_memory_map[key] = max_memory_map[key] // (1024 * 1024 * 1024)
            # Decrease 2 for Pytorch overhead and 2 for the forward to be safe
            max_memory_map[key] = f"{max_memory_map[key] - 4} GiB"
    model = model_class.from_pretrained(
        model_name,
        use_auth_token=os.getenv("HF_AUTH_TOKEN", True),
        device_map="auto",
        offload_folder="./offload",
        torch_dtype=config.torch_dtype,
        max_memory=max_memory_map,
    )
    model.eval()
    print("Current device map:", model.hf_device_map)
    print("Model default generation config:", model.generation_config)
    # TODO: the device_map looks very inefficien right now. that could be improved
    # it typically looks like that
    # {
    #     'model.embed_tokens': 0,
    #     'model.vision_model': 0,
    #     'model.layers.0': 0,
    #     'model.layers.1': 0,
    #     'model.layers.2': 0,
    #     'model.layers.3': 0,
    #     'model.layers.4': 0,
    #     'model.layers.5': 0,
    #     'model.layers.6': 1,
    #     'model.layers.7': 1,
    #     'model.layers.8': 1,
    #     'model.layers.9': 1,
    #     'model.layers.10': 1,
    #     'model.layers.11': 1,
    #     'model.layers.12': 1,
    #     'model.layers.13': 1,
    #     'model.layers.14': 1,
    #     'model.layers.15': 1,
    #     'model.layers.16': 1,
    #     'model.layers.17': 2,
    #     'model.layers.18': 2,
    #     'model.layers.19': 2,
    #     'model.layers.20': 2,
    #     'model.layers.21': 2,
    #     'model.layers.22': 2,
    #     'model.layers.23': 2,
    #     'model.layers.24': 2,
    #     'model.layers.25': 2,
    #     'model.layers.26': 2,
    #     'model.layers.27': 2,
    #     'model.layers.28': 3,
    #     'model.layers.29': 3,
    #     'model.layers.30': 3,
    #     'model.layers.31': 3,
    #     'model.gated_cross_attn_layers.0': 3,
    #     'model.gated_cross_attn_layers.1': 3,
    #     'model.gated_cross_attn_layers.2': 3,
    #     'model.gated_cross_attn_layers.3': 3,
    #     'model.gated_cross_attn_layers.4': 3,
    #     'model.gated_cross_attn_layers.5': 3,
    #     'model.gated_cross_attn_layers.6': 3,
    #     'model.gated_cross_attn_layers.7': 3,
    #     'model.gated_cross_attn_layers.8': 4,
    #     'model.gated_cross_attn_layers.9': 4,
    #     'model.gated_cross_attn_layers.10': 4,
    #     'model.gated_cross_attn_layers.11': 4,
    #     'model.gated_cross_attn_layers.12': 4,
    #     'model.gated_cross_attn_layers.13': 4,
    #     'model.gated_cross_attn_layers.14': 4,
    #     'model.gated_cross_attn_layers.15': 4,
    #     'model.norm': 4,
    #     'lm_head': 4
    # }    which means there is a lot of things going around between the gated cross attention layers and the LM layers...
    return tokenizer, model


MODEL_TO_SPACE_MAPPING = {}
IS_MAIN_SPACE = CURRENT_MODEL not in MODEL_TO_MODEL_CLASS
if IS_MAIN_SPACE:
    for model in MODEL_TO_MODEL_CLASS:
        MODEL_TO_SPACE_MAPPING[model] = gr.Blocks.load(
            name=f"spaces/HuggingFaceM4/{model}", api_key=os.getenv("HF_AUTH_TOKEN", True)
        )
else:
    model_path = f"HuggingFaceM4/{CURRENT_MODEL}"
    tokenizer, model = load_tokenizer_model(model_path, MODEL_TO_MODEL_CLASS[CURRENT_MODEL])


def fetch_images(url_images):
    images = []
    for url in url_images:
        if isinstance(url, str):
            images.append(Image.open(BytesIO(requests.get(url, stream=True).content)))
        else:
            images.append(url)
    return images


def model_generation(
    prompt,
    images,
    tokenizer,
    model,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    # Preparing inputs
    tokens = tokenizer(
        [prompt],
        truncation=True,
        max_length=MAX_SEQ_LEN,
        padding=True,
        add_special_tokens=False,
    )

    input_ids = torch.tensor([[tokenizer.bos_token_id] + tokens.input_ids[0]])
    attention_mask = torch.tensor([[1] + tokens.attention_mask[0]])

    image_attention_mask = [
        incremental_to_binary_attention_mask(
            image_attention_mask_for_packed_input_ids(input_ids[0].unsqueeze(0), tokenizer)[0], num_classes=len(images)
        )
    ]

    image_transform = build_image_transform(eval=True)
    pixel_values = [torch.stack([image_transform(img) for img in images])]

    input_ids = input_ids.to(0)
    attention_mask = attention_mask.to(0)
    pixel_values = torch.stack(pixel_values).to(0)
    image_attention_mask = torch.cat(image_attention_mask, 0).to(0)

    # Excluding some words from the generation
    bad_words_ids = None
    ban_tokens = ban_tokens.replace("\\n", "\n")
    bad_words = ban_tokens.split(";")
    if len(bad_words) > 0:
        bad_words_ids = tokenizer(bad_words, add_special_tokens=False).input_ids

    # Forcing some words in the generation
    force_words_ids = None
    if force_words != "":
        force_words = force_words.replace("\\n", "\n")
        force_words = force_words.split(";")
        if len(force_words) > 0:
            force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

    eos_token_ids = None
    if eos_tokens != "":
        eos_tokens = eos_tokens.replace("\\n", "\n")
        eos_tokens = eos_tokens.split(";")
        if len(eos_tokens) > 0:
            eos_token_ids = []
            for eos_token in eos_tokens:
                tokenized_eos_token = tokenizer(eos_token, add_special_tokens=False).input_ids
                if len(tokenized_eos_token) > 1:
                    raise ValueError(
                        f"eos_tokens should be one token, here {eos_token} is {len(tokenized_eos_token)} tokens:"
                        f" {tokenized_eos_token}"
                    )
                eos_token_ids += tokenized_eos_token

    # Inputs
    input_args = {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "pixel_values": pixel_values,
        "image_attention_mask": image_attention_mask,
    }
    # Common parameters to all decoding strategies
    # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
    generation_args = {
        "temperature": temperature,
        "no_repeat_ngram_size": no_repeat_ngram_size,
        "max_new_tokens": max_new_tokens,
        "min_length": min_length,
        "bad_words_ids": bad_words_ids,
        "force_words_ids": force_words_ids,
        "repetition_penalty": repetition_penalty,
        "eos_token_id": eos_token_ids,
    }

    assert decoding_strategy in [
        "greedy",
        "beam_search",
        "beam_sampling",
        "sampling_top_k",
        "sampling_top_p",
        "contrastive_sampling",
    ]
    if decoding_strategy == "greedy":
        pass
    elif decoding_strategy == "beam_search":
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "beam_sampling":
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        generation_args["do_sample"] = True
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "sampling_top_k":
        generation_args["do_sample"] = True
        generation_args["top_k"] = top_k
    elif decoding_strategy == "sampling_top_p":
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p
    elif decoding_strategy == "contrastive_sampling":
        generation_args["do_sample"] = True
        generation_args["penalty_alpha"] = penalty_alpha
        generation_args["top_k"] = top_k

    generated_tokens = model.generate(
        **input_args,
        **generation_args,
    )
    tokens = tokenizer.convert_ids_to_tokens(generated_tokens[0])
    decoded_skip_special_tokens = repr(
        tokenizer.batch_decode(generated_tokens, skip_special_tokens=hide_special_tokens)[0]
    )
    decoded = repr(tokenizer.batch_decode(generated_tokens)[0])
    logger.info(
        "Result: \n"
        f"Prompt: `{prompt}`\n"
        f"Tokens ids from prompt + generation: `{generated_tokens[0].tolist()}`\n"
        f"Tokens (converted) from prompt + generation: `{tokens}`\n"
        f"String decoded with skipped special tokens: `{decoded_skip_special_tokens}`\n"
        f"String decoded: `{decoded}`\n"
        f"Generation mode: `{decoding_strategy}`\n"
        f"Generation parameters: `{generation_args}`\n"
    )

    original_prompt = generated_tokens[:, : input_ids.shape[-1]]
    actual_generated_tokens = generated_tokens[:, input_ids.shape[-1] :]

    first_end_token = len(actual_generated_tokens[0])
    actual_generated_tokens = actual_generated_tokens[:, :first_end_token]
    displayed_tokens = torch.cat([original_prompt, actual_generated_tokens], dim=-1)
    generated_text = tokenizer.batch_decode(displayed_tokens, skip_special_tokens=hide_special_tokens)[0]
    return generated_text


def model_inference(
    files,
    prompt,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    if isinstance(files, str) and len(files) == 0:
        files = None

    prompt = prompt.strip()
    prompt = prompt.replace("\\n", "\n")
    file_idx = 0
    url_images = re.findall(r"<image(.*?)>", prompt)
    for idx, url_image in enumerate(url_images):
        if len(url_image) == 0:
            url_images[idx] = Image.open(files[file_idx].name if hasattr(files[file_idx], "name") else files[file_idx])
            file_idx += 1
        else:
            prompt = prompt.replace(url_image, "")
            url_images[idx] = url_images[idx][1:]
    images = fetch_images(url_images)

    global model, tokenizer

    generated_text = model_generation(
        prompt=prompt,
        images=images,
        tokenizer=tokenizer,
        model=model,
        temperature=temperature,
        no_repeat_ngram_size=no_repeat_ngram_size,
        max_new_tokens=max_new_tokens,
        min_length=min_length,
        ban_tokens=ban_tokens,
        eos_tokens=eos_tokens,
        force_words=force_words,
        repetition_penalty=repetition_penalty,
        hide_special_tokens=hide_special_tokens,
        decoding_strategy=decoding_strategy,
        num_beams=num_beams,
        length_penalty=length_penalty,
        top_k=top_k,
        top_p=top_p,
        penalty_alpha=penalty_alpha,
    )
    return generated_text.strip()


def try_model_inference(
    model,
    files,
    prompt,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    count = 0
    while count < MAX_TRIES:
        try:
            return MODEL_TO_SPACE_MAPPING[model](
                files,
                prompt,
                temperature,
                no_repeat_ngram_size,
                max_new_tokens,
                min_length,
                ban_tokens,
                eos_tokens,
                force_words,
                repetition_penalty,
                hide_special_tokens,
                decoding_strategy,
                num_beams,
                length_penalty,
                top_k,
                top_p,
                penalty_alpha,
                api_name="model_inference",
            )
        except KeyError:
            # Gradio return {'error': None} some times.
            time.sleep(3)
            count += 1
            pass


def all_model_inference(
    prompt,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    outputs = []
    print(
        prompt,
        temperature,
        no_repeat_ngram_size,
        max_new_tokens,
        min_length,
        ban_tokens,
        eos_tokens,
        force_words,
        repetition_penalty,
        hide_special_tokens,
        decoding_strategy,
        num_beams,
        length_penalty,
        top_k,
        top_p,
        penalty_alpha,
    )
    outputs = Parallel(n_jobs=len(MODEL_TO_SPACE_MAPPING), backend="threading")(
        delayed(try_model_inference)(
            model,
            os.path.join(os.path.dirname(__file__), "images", "bear.jpg"),
            prompt,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            ban_tokens,
            eos_tokens,
            force_words,
            repetition_penalty,
            hide_special_tokens,
            decoding_strategy,
            num_beams,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        )
        for model in MODEL_TO_SPACE_MAPPING
    )
    if len(outputs) == 1:
        outputs = outputs[0]
    return outputs


examples = [
    [
        None,
        """The following is a conversation between a highly knowledgeable and intelligent AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.

The conversation begins:
User:<fake_token_around_image><image:https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg><fake_token_around_image>Describe this image.</s>
Assistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitte, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.</s>
User:How about this image?<fake_token_around_image><image:https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg><fake_token_around_image>Can you describe it too?</s>
Assistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.</s>
User: What kind of breed is it?</s>
Assistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.</s>
User: What can you tell me about this breed of dogs?</s>
Assistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.</s>
User: ghjkhjabnufs</s>Assistant: That doesn’t seem to be a word. Could you ask me another way?</s>
User: Do you like Cavalier King Charles Spaniel?</s>
Assistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.</s>
User: How many dogs do you see in this image?<fake_token_around_image><image:https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg><fake_token_around_image></s>
Assistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.</s>
User:<fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BMjE4MTcwMTM1Nl5BMl5BanBnXkFtZTcwMTIwMzMzMw@@._V1_.jpg><fake_token_around_image>Describe all of the parts of this image.</s>
Assistant:""",
        1.0,
        0,
        256,
        10,
        "<image>;<fake_token_around_image>",
        "</s>;User",
        "",
        1.0,
        False,
        "greedy",
        1,
        1.0,
        50,
        0.5,
        0.95,
    ],
    #     [
    #         None,
    #         """This is a conversation between a human, User, and an intelligent visual AI, Bot. User sends images, and Bot answer the questions from the user.
    # User: <fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BMjE4MTcwMTM1Nl5BMl5BanBnXkFtZTcwMTIwMzMzMw@@._V1_.jpg><fake_token_around_image>
    # Describe this image.
    # Bot:""",
    #         1,
    #         2,
    #         64,
    #         10,
    #         "<image>;<fake_token_around_image>;User;user;Bot;bot;Question;question;Answer;answer;\n",
    #         False,
    #         False,
    #         True,
    #     ],
    #     [
    #         None,
    #         """This is a conversation between a human, User, and an intelligent visual AI, Bot. User sends images, and Bot answer the questions from the user.
    # User: <fake_token_around_image><image:https://i.redd.it/hsktcp4nv1g01.jpg><fake_token_around_image>
    # Why do people find this image funny?
    # Bot:""",
    #         1,
    #         2,
    #         64,
    #         10,
    #         "<image>;<fake_token_around_image>;User;user;Bot;bot;Question;question;Answer;answer;\n",
    #         False,
    #         False,
    #         True,
    #     ],
    #     [
    #         None,
    #         """This is a conversation between a human, User, and an intelligent visual AI, Bot. User sends images, and Bot answer the questions from the user.
    # User: <fake_token_around_image><image:https://pbs.twimg.com/media/FooD7oyakAIU5_Q?format=jpg&name=large><fake_token_around_image>
    # Describe what's in this image.
    # Bot:""",
    #         1,
    #         2,
    #         64,
    #         10,
    #         "<image>;<fake_token_around_image>;User;user;Bot;bot;Question;question;Answer;answer;\n",
    #         False,
    #         False,
    #         True,
    #     ],
    #     [
    #         None,
    #         """This is a conversation between a human, User, and an intelligent visual AI, Bot. User sends images, and Bot answer the questions from the user.
    # User: <fake_token_around_image><image:https://www.tutorialride.com/images/non-verbal-analogy-questions/non-verbal-analogy-logical-reasoning-1.jpg><fake_token_around_image>
    # What's the correct answer? A, B, C or D?
    # Bot:""",
    #         1,
    #         2,
    #         64,
    #         10,
    #         "<image>;<fake_token_around_image>;User;user;Bot;bot;Question;question;Answer;answer;\n",
    #         False,
    #         False,
    #         True,
    #     ],
]


MSG_MAIN = """
# Text generation with Vllama models

### Help to write prompts:

Put the urls to the images inside the image tokens, it will be converted into the real image tokens. Put <fake_token_around_image> before and after each image token WITHOUT space. The texts \\n will be converted into real newline characters. See examples and additional details below.
"""
# MSG_DETAILS = """
# ### Additional details
# - if the model was trained with the template 1 (`\\n\\n<image>\\n\\n`), then `<fake_token_around_image>` will be replaced with `\\n\\n`. This is particularly useful if you are comparing the performance of different models trained with different templates.
# - special tokens are not automatically added to the prompt, so add them manually.
# - with the first template `\\n\\n<image>\\n\\n` , the sequence isn't necessary tokenized as `["\\n\\n", "<image>", "\\n\\n"]` to enforce this behavior, you can use the "Integrate image sequence as ids" parameter.
# """
# if ~IS_MAIN_SPACE:
#     MSG_DETAILS += (
#         "- alternatively, you can upload images and then directly specify them via \<image\> tag in the prompt."
#     )

with gr.Blocks() as demo:
    gr.Markdown(MSG_MAIN)
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Input")
            if not IS_MAIN_SPACE:
                images = gr.File(label="Images", file_count="multiple")
            prompt = gr.Textbox(label="Prompt", placeholder="Enter the prompt here")

            gr.Markdown("## Common parameters to all decoding strategy")
            temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Softmax temperature")
            no_repeat_ngram_size = gr.Slider(
                minimum=0,
                maximum=10,
                step=1,
                value=0,
                label="The size of an n-gram that cannot occur more than once (0=infinity)",
            )
            max_new_tokens = gr.Slider(
                minimum=0, maximum=512, step=1, value=256, label="Maximum number of new tokens to generate"
            )
            min_length = gr.Slider(
                minimum=0, maximum=512, step=1, value=16, label="Minimum length of the sequence to be generated"
            )
            ban_tokens = gr.Textbox(
                label='Tokens to prevent from being generated (separated by ";")',
                value="<image>;<fake_token_around_image>",
            )
            eos_tokens = gr.Textbox(label="EOS tokens", value="</s>")
            force_words = gr.Textbox(label='Force words to be generated (separated by ";")', value="")
            repetition_penalty = gr.Slider(
                minimum=0, maximum=10, step=0.01, value=1, label="repetition_penalty. CTRL paper suggests 1.2."
            )
            hide_special_tokens = gr.Checkbox(label="Hide special tokens in the text", value=False)

            gr.Markdown("## Decoding strategy and its specific parameters")
            decoding_strategy = gr.Dropdown(
                ["greedy", "beam_search", "beam_sampling", "sampling_top_k", "sampling_top_p", "contrastive_sampling"],
                label="Decoding strategy",
                value="greedy",
            )
            num_beams = gr.Slider(
                minimum=0,
                maximum=10,
                step=1,
                value=3,
                label="Beam size",
                info="Only used if `decoding_strategy` is `beam_search` or `beam_sampling`",
            )
            length_penalty = gr.Slider(
                minimum=-1000,
                maximum=1000,
                step=0.1,
                value=1,
                label=(
                    "length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter"
                    " sequences. Only used if `decoding_strategy` is `beam_search` or `beam_sampling`"
                ),
            )
            top_k = gr.Slider(
                minimum=0,
                maximum=500,
                step=1,
                value=50,
                label="Top k",
                info="Only used if `decoding_strategy` is `sampling_top_k` or `contrastive_sampling`",
            )
            top_p = gr.Slider(
                minimum=0,
                maximum=1,
                step=0.01,
                value=0.95,
                label="Top p",
                info="Only used if `decoding_strategy` is `sampling_top_p`",
            )
            penalty_alpha = gr.Slider(
                minimum=0,
                maximum=1,
                step=0.01,
                value=0.95,
                label="Penalty alpha",
                info="Only used if `decoding_strategy` is `contrastive_sampling`",
            )

            submit = gr.Button(label="Generate")

        with gr.Column():
            if IS_MAIN_SPACE:
                outputs = [
                    gr.Textbox(label=MODEL_TO_DISPLAY_NAME[model], multiline=True, readonly=True)
                    for model in MODEL_TO_MODEL_CLASS
                ]
                inference_func = all_model_inference
                inputs = [
                    prompt,
                    temperature,
                    no_repeat_ngram_size,
                    max_new_tokens,
                    min_length,
                    ban_tokens,
                    eos_tokens,
                    force_words,
                    repetition_penalty,
                    hide_special_tokens,
                    decoding_strategy,
                    num_beams,
                    length_penalty,
                    top_k,
                    top_p,
                    penalty_alpha,
                ]

                examples = [example[1:] for example in examples]
            else:
                outputs = gr.Textbox(label="Generated text", interactive=False)
                inference_func = model_inference
                inputs = [
                    images,
                    prompt,
                    temperature,
                    no_repeat_ngram_size,
                    max_new_tokens,
                    min_length,
                    ban_tokens,
                    eos_tokens,
                    force_words,
                    repetition_penalty,
                    hide_special_tokens,
                    decoding_strategy,
                    num_beams,
                    length_penalty,
                    top_k,
                    top_p,
                    penalty_alpha,
                ]
    with gr.Row():
        gr.Examples(inputs=inputs, examples=examples)
        # gr.Markdown(MSG_DETAILS)

        submit.click(inference_func, inputs=inputs, outputs=outputs, api_name="model_inference")

demo.queue()
demo.launch()