File size: 48,459 Bytes
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea3b22
 
 
 
 
 
 
 
 
668f68a
aea3b22
e1926be
 
29de147
 
aea3b22
668f68a
 
 
 
 
29de147
 
 
 
 
668f68a
29de147
668f68a
29de147
4192a3f
668f68a
e04700c
aea3b22
e7d3e35
aea3b22
 
 
e1926be
 
 
aea3b22
 
668f68a
aea3b22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668f68a
 
 
 
 
4192a3f
aea3b22
668f68a
e04700c
e7d3e35
5225464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d3e35
5225464
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea3b22
 
 
e7d3e35
 
aea3b22
e7d3e35
 
aea3b22
 
 
 
 
e7d3e35
aea3b22
 
 
e7d3e35
aea3b22
e7d3e35
aea3b22
e7d3e35
aea3b22
e7d3e35
aea3b22
e7d3e35
aea3b22
e7d3e35
 
 
 
 
 
 
 
 
 
 
aea3b22
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea3b22
 
e7d3e35
 
aea3b22
 
e1926be
 
 
 
 
 
 
aea3b22
 
 
e1926be
 
 
e7d3e35
 
 
 
 
aea3b22
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5225464
 
 
 
 
e7d3e35
 
 
 
5225464
e7d3e35
5225464
e7d3e35
5225464
e7d3e35
 
 
 
 
5225464
 
e7d3e35
 
 
 
5225464
e7d3e35
5225464
e7d3e35
5225464
 
e7d3e35
 
 
5225464
 
e7d3e35
5225464
e7d3e35
 
 
5225464
e7d3e35
5225464
e7d3e35
5225464
e7d3e35
5225464
e7d3e35
 
5225464
e7d3e35
5225464
 
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6934ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5225464
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668f68a
 
 
 
 
e7d3e35
 
 
 
 
 
 
 
 
 
668f68a
 
 
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
668f68a
e7d3e35
 
 
 
 
 
 
 
 
 
5b75fd3
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1926be
 
 
 
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
import base64
import copy
import logging
import os
import re
from io import BytesIO
from typing import List, Optional, Tuple, Union
from urllib.parse import urlparse

import gradio as gr
import PIL
from accelerate.utils import get_max_memory, set_seed
from PIL import Image
from transformers import AutoConfig, AutoProcessor, IdeficsForVisionText2Text


MODELS = [
    "HuggingFaceM4/idefics-9b-instruct",
    "HuggingFaceM4/idefics-80b-instruct",
]

SYSTEM_PROMPT = [
    """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.

The conversation begins:""",
    """\nUser:<fake_token_around_image><image:https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg><fake_token_around_image>Describe this image.<end_of_utterance>""",
    """\nAssistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitten, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.<end_of_utterance>""",
    (
        "\nUser:How about this"
        " image?<fake_token_around_image><image:https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg><fake_token_around_image>Can"
        " you describe it too?<end_of_utterance>"
    ),
    """\nAssistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.<end_of_utterance>""",
    "\nUser: What kind of breed is it?<end_of_utterance>",
    """\nAssistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.<end_of_utterance>""",
    "\nUser: What can you tell me about this breed of dogs?<end_of_utterance>",
    """\nAssistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.<end_of_utterance>""",
    "\nUser: ghjkhjabnufs<end_of_utterance>",
    """\nAssistant: That doesn’t seem to be a word. Could you ask me another way?<end_of_utterance>""",
    "\nUser: Do you like Cavalier King Charles Spaniel?<end_of_utterance>\n",
    """\nAssistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.<end_of_utterance>""",
    (
        "\nUser: How many dogs do you see in this"
        " image?<fake_token_around_image><image:https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg><fake_token_around_image><end_of_utterance>"
    ),
    """\nAssistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.<end_of_utterance>""",
]

BAN_TOKENS = "<image>;<fake_token_around_image>"
EOS_TOKENS = "</s>;<end_of_utterance>;User"


TOKENIZER_FAST = True
MAX_SEQ_LEN = 2048

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()

SEED = 38
set_seed(38)

import requests 
from io import BytesIO
import uuid

from PIL import Image

from PIL import Image
import tempfile


def convert_to_rgb_pil(image):
    print(f"***** convert_to_rgb_pil ******")
    print(f"params: image is - {image}")
    #if image.mode == "RGB":
    #    return image
    # Save the converted image to a temporary file
    #temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
    #temp_file_path = temp_file.name
    filename = f"{uuid.uuid4()}.jpg"
    local_path = f"{filename}"
    
    if image.mode != "RGB":
        image_rgba = image.convert("RGBA")
        background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
        alpha_composite = Image.alpha_composite(background, image_rgba)
        alpha_composite = alpha_composite.convert("RGB")
        alpha_composite.save(local_path)
    else:
        image.save(local_path)
        
    #temp_file.close()
    print(f"# Return the path to the saved image as - {local_path}")
    return local_path  # Return the path to the saved image
    

def convert_to_rgb(filepath_or_pilimg):
    # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
    # for transparent images. The call to `alpha_composite` handles this case
    print(f"***** convert_to_rgb ******")
    print(f"params: image is - {filepath_or_pilimg}")
    
    if isinstance(filepath_or_pilimg, PIL.Image.Image):
        return convert_to_rgb_pil(filepath_or_pilimg)
        
    with Image.open(filepath_or_pilimg) as image:
        # Check if the image is already in the RGB format
        if image.mode == "RGB":
            return filepath_or_pilimg  # If already in RGB, return the original path

        # Convert image to RGBA
        image_rgba = image.convert("RGBA")
        
        # Create a white background image of the same size
        background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
        
        # Composite the original image over the white background
        alpha_composite = Image.alpha_composite(background, image_rgba)
        
        # Convert the composited image to RGB format
        alpha_composite = alpha_composite.convert("RGB")

        # Save the converted image to a temporary file
        filename = f"{uuid.uuid4()}.jpg"
        local_path = f"{filename}"
        #temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
        #temp_file_path = temp_file.name
        alpha_composite.save(local_path)
        #temp_file.close()

        print(f"# Return the path to the saved image as - {local_path}")
        return local_path  # Return the path to the saved image

def pil_to_markdown_im(image):
    """
    Convert a PIL image into markdown filled with the base64 string representation.
    """
    print(f"***** pil_to_markdown_im ******")
    print(f"params: image is - {image}")
    #if isinstance(image, PIL.Image.Image):
    #img_b64_str = pil_to_base64(image)
    #img_str = f'<img src="data:image/png;base64,{img_b64_str}" />'
    #if path_or_url.startswith(("http://", "https://")):
    #response = requests.get(image)
    #image = Image.open(BytesIO(response.content))
    # Generate a unique filename using UUID
    filename = f"{uuid.uuid4()}.jpg"
    local_path = f"{filename}" 
    image.save(local_path)
    img_str =  f"![](/file={local_path})"
    return img_str

    
def base64_to_pil(encoded_image):
    decoded_image = base64.b64decode(encoded_image)
    pil_image = Image.open(BytesIO(decoded_image))
    return pil_image


def im_markdown_to_pil(im_markdown_str):
    pattern = r'<img src="data:image/png;base64,([^"]+)" />'
    match = re.search(pattern, im_markdown_str)
    img_b64_str = match.group(1)
    return base64_to_pil(img_b64_str)


def split_str_on_im_markdown(string_with_potential_im_markdown):
    """
    Extract from a string (typically the user prompt string) the potentional images saved as a base64 representation
    inside a markdown.
    """
    pattern = r'<img src="data:image/png;base64,([^"]+)" />'
    parts = re.split(pattern, string_with_potential_im_markdown)
    result = []

    for i, part in enumerate(parts):
        if i % 2 == 0:
            result.append(part)
        else:
            img_tag = f'<img src="data:image/png;base64,{part.strip()}" />'
            result.append(img_tag)

    return result


# Fetching utils
def is_url(string):
    """
    Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
    invalidated the url
    """
    if " " in string:
        return False
    result = urlparse(string)
    return all([result.scheme, result.netloc])


def isolate_images_urls(prompt_list):
    """
    Convert a full string prompt to the list format expected by the processor.
    In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
    From:
    ```
    [
        "bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    to:
    ```
    [
        "bonjour",
        IMG_URL,
        "hello",
        PIL.Image.Image,
        "Aurevoir",
    ]
    ```
    """
    print(f"******* isolate_images_urls *******")
    print(f"params: prompt_list is - {prompt_list}")
    
    linearized_list = []
    for prompt in prompt_list:
        print(f"inside FOR loop: prompt in prompt_list is - {prompt}")
        # Prompt can be either a string, or a PIL image
        if isinstance(prompt, PIL.Image.Image):
            print(f"inside first IF in FOR loop: prompt is of type PIL.Image.Image")
            linearized_list.append(prompt)
            print(f"linearized_list after append is - {linearized_list}")
        elif isinstance(prompt, str) and "/tmp/gradio/" in prompt: #isinstance(prompt, PIL.Image.Image):
            print(f"inside IF in FOR loop: prompt is a string and is a path for temporary file")
            linearized_list.append(prompt)
            print(f"linearized_list after append is - {linearized_list}")
        elif isinstance(prompt, str) and "/tmp/gradio/" not in prompt:
            print(f"inside ELIF in FOR loop: prompt is a string and is NOT a path for temporary file")
            if "<fake_token_around_image>" not in prompt:
                print(f"inside IF inside ELIF in FOR loop: '<fake_token_around_image>' is NOT in prompt")
                linearized_list.append(prompt)
                print(f"linearized_list after append is - {linearized_list}")
            else:
                print(f"inside ELSE inside ELIF in FOR loop: '<fake_token_around_image>' IS IN prompt")
                prompt_splitted = prompt.split("<fake_token_around_image>")
                print(f"prompt_splitted is - {prompt_splitted}")
                for ps in prompt_splitted:
                    print(f"Inside FOR loop inside FOR loop: ps in prompt_split is {ps}")
                    if ps == "":
                        continue
                    if ps.startswith("<image:"):
                        linearized_list.append(ps[7:-1])
                    else:
                        linearized_list.append(ps)
        else:
            raise TypeError(
                f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
                " `PIL.Image.Image`]"
            )
            print(f"linearized_list to be returned is - {linearized_list}")
    return linearized_list


# Chatbot handling utils
def handle_manual_images_in_user_prompt(user_prompt: str) -> List[Union[str, PIL.Image.Image]]:
    """
    Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
    by fetching them and replacing the whole sub-sequence by a PIL image.
    """
    if "<fake_token_around_image>" in user_prompt:
        splitted_user_prompt = isolate_images_urls([user_prompt])
        resulting_user_prompt = []
        for up in splitted_user_prompt:
            if is_url(up):
                img = processor.image_processor.fetch_images([up])[0]
                resulting_user_prompt.append(img)
            else:
                resulting_user_prompt.append(up)
        return resulting_user_prompt
    else:
        return [user_prompt]


def user_prompt_list_to_markdown(user_prompt_list: List[Union[str, PIL.Image.Image]]):
    """
    Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
    the markdown format that is used for the chatbot history and rendering.
    """
    print("********** user_prompt_list_to_markdown *********")
    print(f" param : user_prompt_list is - {user_prompt_list}")
    resulting_string = ""
    for elem in user_prompt_list:
        print(f"inside user_prompt_list_to_markdown, for loop on user_prompt_list")
        print(f"elem is - {elem} ")
        if isinstance(elem, str):
            if "/tmp/gradio/" not in elem:
                resulting_string += elem
                print(f"inside IF - when elem is string and is not temp image filepath. resulting_string is - {resulting_string}")
            elif "/tmp/gradio/" in elem:            
                resulting_string += f"![](/file={convert_to_rgb(elem)})"
                print(f"inside IF - when elem is string and is a temp image filepath. resulting_string is - {resulting_string}")       
        #elif isinstance(elem, str) and "/tmp/gradio/" in elem:
        #    resulting_string += f"![](/file={convert_to_rgb(elem)})"  #f"![](/file={image})" 
        #    print(f"inside first ELIF - when elem is string and is the temp image filepath. resulting_string is - {resulting_string}")
        elif isinstance(elem, PIL.Image.Image): #or "/tmp/gradio/" in elem:  #and "/tmp/gradio/" in elem:
            resulting_string += f"![](/file={convert_to_rgb(elem)})" #pil_to_markdown_im(convert_to_rgb(elem)) <---------------
            print(f"inside the ELIF - when elem is an instance of  PIL.Image.Image. The resulting_string after convert_to_rgb() operation is - {resulting_string}")
        else:
            raise ValueError(
                "Unknown type for `user_prompt_list`. Expected an element of type `str` or `PIL.Image.Image` and got"
                f" `{type(elem)}`"
            )
    print(f" final resulting_string that will be returned is - {resulting_string}")
    return resulting_string


def remove_spaces_around_token(text):
    pattern = r'\s*(<fake_token_around_image>)\s*'
    replacement = r'\1'
    result = re.sub(pattern, replacement, text)
    return result


# Model and generation utils
def load_processor_tokenizer_model(model_name):
    processor = AutoProcessor.from_pretrained(
        model_name,
        token=os.getenv("HF_AUTH_TOKEN", True),
        truncation_side="left",
    )
    tokenizer = processor.tokenizer

    config = AutoConfig.from_pretrained(model_name, use_auth_token=os.getenv("HF_AUTH_TOKEN", True))
    max_memory_map = get_max_memory()

    for key in max_memory_map.keys():
        if key != "cpu":
            # Get this in GB
            max_memory_map[key] = max_memory_map[key] // (1024 * 1024 * 1024)
            # Decrease 2 for Pytorch overhead and 2 for the forward to be safe
            max_memory_map[key] = f"{max_memory_map[key] - 4} GiB"

    model = IdeficsForVisionText2Text.from_pretrained(
        model_name,
        token=os.getenv("HF_AUTH_TOKEN", True),
        device_map="auto",
        offload_folder="./offload",
        torch_dtype=config.torch_dtype,
        max_memory=max_memory_map,
    )
    model.eval()
    print("Current device map:", model.hf_device_map)
    print("Model default generation config:", model.generation_config)
    # TODO: the device_map looks very inefficien right now. that could be improved
    return processor, tokenizer, model


def format_user_prompt_with_im_history_and_system_conditioning(
    current_user_prompt_str: str, current_image: Optional[PIL.Image.Image], history: List[Tuple[str, str]]
) -> List[Union[str, PIL.Image.Image]]:
    """
    Produces the resulting list that needs to go inside the processor.
    It handles the potential image box input, the history and the system conditionning.
    """
    print(f"*********format_user_prompt_with_im_history_and_system_conditioning*********")
    print(f"format_user_prompt_with_im_history_and_system_conditioning -- param current_user_prompt_str is - {current_user_prompt_str} ")
    print(f"format_user_prompt_with_im_history_and_system_conditioning -- param current_image is - {current_image} ")
    print(f"format_user_prompt_with_im_history_and_system_conditioning -- param history is - {history} ")
    
    resulting_list = copy.deepcopy(SYSTEM_PROMPT)

    # Format history
    for turn in history:
        print(f"inside for loop, turn is - {turn}")
        user_utterance, assistant_utterance = turn
        print("calling split_str_on_im_markdown from inside for loop inside format_user_prompt_with_im_history_and_system_conditioning")
        splitted_user_utterance = split_str_on_im_markdown(user_utterance)
        print(f"splitted_user_utterance from split_str_on_im_markdown is - {splitted_user_utterance} ")
        splitted_user_utterance = [
            im_markdown_to_pil(s) if s.startswith('<img src="data:image/png;base64,') else s
            for s in splitted_user_utterance
            if s != ""
        ]
        print(f"splitted_user_utterance after im_markdown_to_pil() is - {splitted_user_utterance} ")
        
        if isinstance(splitted_user_utterance[0], str):
            resulting_list.append("\nUser: ")
        else:
            resulting_list.append("\nUser:")
        print(f"resulting_list after if..else block is - {resulting_list}")
        resulting_list.extend(splitted_user_utterance)
        print(f"resulting_list after extend is - {resulting_list}")
        resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
        print(f"resulting_list after append is - {resulting_list}")
        

    # Format current input
    current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
    print(f"current_user_prompt_str is - {current_user_prompt_str}")
    
    if current_image is None:
        print("inside IF : current_image is NONE")
        if "<img src=data:image/png;base64" in current_user_prompt_str:
            raise ValueError("The UI does not support inputing via the text box an image in base64.")
        current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)
        print(f"current_user_prompt_list (or [user_prompt]/resulting_user_prompt((most likely this one)) from handle_manual_images_in_user_prompt ) is - {current_user_prompt_list}")
        resulting_list.append("\nUser: ")
        print(f"resulting_list with append user - {resulting_list}")
        resulting_list.extend(current_user_prompt_list)
        print(f"resulting_list after extend with current_user_prompt_list is - {resulting_list}")
        resulting_list.append("<end_of_utterance>\nAssistant:")
        print(f"resulting_list after append with end_of_utteranceAssistant is - {resulting_list}")
        return resulting_list, current_user_prompt_list
    else:
        print("inside ELSE : current_image is not NONE")
        # Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
        resulting_list.extend(["\nUser:", Image.open(current_image), f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"]) #current_image
        print(f"final resulting_list passed on to calling function is - {resulting_list}")
        return resulting_list, [current_user_prompt_str]


def model_generation(
    prompt_list,
    processor,
    tokenizer,
    model,
    temperature,
    no_repeat_ngram_size,
    max_new_tokens,
    min_length,
    ban_tokens,
    eos_tokens,
    force_words,
    repetition_penalty,
    hide_special_tokens,
    decoding_strategy,
    num_beams,
    length_penalty,
    top_k,
    top_p,
    penalty_alpha,
):
    input_args = processor(
        isolate_images_urls(prompt_list),
        truncation=True,
        max_length=MAX_SEQ_LEN - max_new_tokens,
        padding=True,
        add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
    )
    for k, v in input_args.items():
        input_args[k] = v.to(0)

    # Excluding some words from the generation
    bad_words_ids = None
    ban_tokens = ban_tokens.replace("\\n", "\n")
    bad_words = ban_tokens.split(";")
    if len(bad_words) > 0:
        bad_words_ids = tokenizer(bad_words, add_special_tokens=False).input_ids

    # Forcing some words in the generation
    force_words_ids = None
    if force_words != "":
        force_words = force_words.replace("\\n", "\n")
        force_words = force_words.split(";")
        if len(force_words) > 0:
            force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

    eos_token_ids = None
    if eos_tokens != "":
        eos_tokens = eos_tokens.replace("\\n", "\n")
        eos_tokens = eos_tokens.split(";")
        if len(eos_tokens) > 0:
            eos_token_ids = []
            for eos_token in eos_tokens:
                tokenized_eos_token = tokenizer.convert_tokens_to_ids(eos_token)
                if tokenized_eos_token == 0: # <unk> with our llama tokenizer
                    raise ValueError(f"Unknown tokens specified for exit condition.")
                eos_token_ids += [tokenized_eos_token]

    # Common parameters to all decoding strategies
    # This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
    generation_args = {
        "no_repeat_ngram_size": no_repeat_ngram_size,
        "max_new_tokens": max_new_tokens,
        "min_length": min_length,
        "bad_words_ids": bad_words_ids,
        "force_words_ids": force_words_ids,
        "repetition_penalty": repetition_penalty,
        "eos_token_id": eos_token_ids,
    }

    assert decoding_strategy in [
        "Greedy",
        "beam_search",
        "beam_sampling",
        "sampling_top_k",
        "Top P Sampling",
        "contrastive_sampling",
    ]
    if decoding_strategy == "Greedy":
        pass
    elif decoding_strategy == "beam_search":
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "beam_sampling":
        generation_args["temperature"] = temperature
        generation_args["num_beams"] = num_beams
        generation_args["length_penalty"] = length_penalty
        generation_args["do_sample"] = True
        assert generation_args["num_beams"] > 1
    elif decoding_strategy == "sampling_top_k":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_k"] = top_k
    elif decoding_strategy == "Top P Sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["top_p"] = top_p
    elif decoding_strategy == "contrastive_sampling":
        generation_args["temperature"] = temperature
        generation_args["do_sample"] = True
        generation_args["penalty_alpha"] = penalty_alpha
        generation_args["top_k"] = top_k

    generated_tokens = model.generate(
        **input_args,
        **generation_args,
    )

    tokens = tokenizer.convert_ids_to_tokens(generated_tokens[0])
    decoded_skip_special_tokens = repr(
        tokenizer.batch_decode(generated_tokens, skip_special_tokens=hide_special_tokens)[0]
    )

    actual_generated_tokens = generated_tokens[:, input_args["input_ids"].shape[-1] :]
    first_end_token = len(actual_generated_tokens[0])
    actual_generated_tokens = actual_generated_tokens[:, :first_end_token]
    generated_text = tokenizer.batch_decode(actual_generated_tokens, skip_special_tokens=hide_special_tokens)[0]

    logger.info(
        "Result: \n"
        f"----Prompt: `{prompt_list}`\n"
        f"----Tokens ids - prompt + generation: `{generated_tokens[0].tolist()}`\n"
        f"----Tokens converted - prompt + generation: `{tokens}`\n"
        f"----String decoded with skipped special tokens - prompt + generation: `{decoded_skip_special_tokens}`\n"
        f"----Total length - prompt + generation `{len(generated_tokens[0].tolist())}`\n"
        f"----Token ids - generation: `{actual_generated_tokens[0].tolist()}`\n"
        f"----Tokens converted - generation: `{tokenizer.convert_ids_to_tokens(actual_generated_tokens[0])}`\n"
        f"----String decoded with skipped special tokens - generation: `{generated_text}`\n"
        f"----Total length - generation: `{len(actual_generated_tokens[0].tolist())}`\n"
        f"----Generation mode: `{decoding_strategy}`\n"
        f"----Generation parameters: `{generation_args}`\n"
    )

    return generated_text

def process_example(message, image):
    print("********* process_example **********")
    clear_msg, image_value, chat = model_inference(
        user_prompt_str=message,
        chat_history=[],
        image=image,
        decoding_strategy="Greedy",
        num_beams=None,
        temperature=None,
        no_repeat_ngram_size=None,
        max_new_tokens=512,
        min_length=16,
        repetition_penalty=None,
        length_penalty=None,
        top_k=None,
        top_p=0.95,
        penalty_alpha=None,
    )
    return clear_msg, image_value, chat
        
dope_callback = gr.CSVLogger()
dope_hf_callback = gr.HuggingFaceDatasetSaver(
    hf_token=os.getenv("HF_AUTH_TOKEN"),
    dataset_name="HuggingFaceM4/gradio_dope_data_points",
    private=True,
)
problematic_callback = gr.CSVLogger()

textbox = gr.Textbox(
    show_label=False,
    value="Describe the battle against the fierce dragons.",
    visible=True,
    container=False,
    label="Text input",
)
with gr.Blocks(title="IDEFICS-Chat", theme=gr.themes.Base()) as demo:
    gr.Markdown(
        """
        # IDEFICS
        This is a demo for [IDEFICS](https://huggingface.co/HuggingFaceM4/idefics-80b), a open-access large visual lanugage model built built solely on publicly available data and models.
        <br>Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs.
        <br>IDEFICS (which stans for **I**mage-aware **D**ecoder **E**nhanced à la **F**lamingo with **I**nterleaved **C**ross-attention**S**) is an open-access reproduction of [Flamingo](https://huggingface.co/papers/2204.14198), a closed-source visual language model developed by Deepmind.

        The [model cards](https://huggingface.co/HuggingFaceM4/idefics-80b) and [dataset card](https://huggingface.co/datasets/HuggingFaceM4/OBELISC) provide plenty of information about the model and training data.
        <br>We provide an [interactive visualization](https://atlas.nomic.ai/map/f2fba2aa-3647-4f49-a0f3-9347daeee499/ee4a84bd-f125-4bcc-a683-1b4e231cb10f) (TODO: change to official link when have it) that allows exploring the content of the training data.
        <br>You can also [read more about](https://github.com/huggingface/m4-logs/blob/master/memos/README.md) some of the technical challenges encountered during training IDEFICS.
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row(elem_id="model_selector_row"):
                model_selector = gr.Dropdown(
                    choices=MODELS,
                    value="HuggingFaceM4/idefics-9b-instruct",
                    interactive=True,
                    show_label=False,
                    container=False,
                    label="Model"
                )
            processor, tokenizer, model = load_processor_tokenizer_model(model_selector.value)

            imagebox = gr.Image(type="filepath", label="Image input")

            with gr.Accordion("Advanced parameters", open=False, visible=True) as parameter_row:
                max_new_tokens = gr.Slider(
                    minimum=0,
                    maximum=2048,
                    value=512,
                    step=1,
                    interactive=True,
                    label="Maximum number of new tokens to generate",
                )
                min_length = gr.Slider(
                    minimum=0,
                    maximum=50,
                    value=0,
                    step=1,
                    interactive=True,
                    label="Minimum number of new tokens to generate",
                )
                repetition_penalty = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    value=1.0,
                    step=0.1,
                    interactive=True,
                    label="Repetition penalty",
                    info="1.0 means no penalty",
                )
                no_repeat_ngram_size = gr.Slider(
                    minimum=0,
                    maximum=10,
                    value=0,
                    step=1,
                    interactive=True,
                    label="N-gram repetition threshold",
                    info="If set to int > 0, all ngrams of that size can only occur once.",
                )
                decoding_strategy = gr.Radio(
                    [
                        "Greedy",
                        # "beam_search",
                        # "beam_sampling",
                        # "sampling_top_k",
                        "Top P Sampling",
                    ],
                    value="Top P Sampling",
                    label="Decoding strategy",
                    interactive=True,
                )
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    value=1.2,
                    step=0.1,
                    interactive=True,
                    label="Sampling temperature",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(
                        visible=(
                            selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
                        )
                    ),
                    inputs=decoding_strategy,
                    outputs=temperature,
                )
                num_beams = gr.Slider(
                    minimum=0,
                    maximum=20,
                    value=3.0,
                    step=1.0,
                    interactive=True,
                    visible=False,
                    label="Number of beams",
                    info="Only used if `decoding_strategy` is `beam_search` or `beam_sampling`.",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
                    inputs=decoding_strategy,
                    outputs=num_beams,
                )
                top_p = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.8,
                    step=0.01,
                    interactive=True,
                    visible=True,
                    label="Top P",
                    info=(
                        "If set to float < 1, only the smallest set of most probable tokens with probabilities that"
                        " add up to top_p or higher are kept for generation."
                    ),
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["Top P Sampling"])),
                    inputs=decoding_strategy,
                    outputs=top_p,
                )
                top_k = gr.Slider(
                    minimum=0,
                    maximum=500,
                    value=50,
                    step=1,
                    interactive=True,
                    visible=False,
                    label="Top K",
                    info="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["sampling_top_k"])),
                    inputs=decoding_strategy,
                    outputs=top_k,
                )
                length_penalty = gr.Slider(
                    minimum=-1000.0,
                    maximum=1000.0,
                    value=1.0,
                    step=0.1,
                    interactive=True,
                    visible=False,
                    label="Length penalty",
                    info=(
                        "length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter"
                        " sequences. Only used if `decoding_strategy` is `beam_search` or `beam_sampling`."
                    ),
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
                    inputs=decoding_strategy,
                    outputs=length_penalty,
                )
                penalty_alpha = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    value=0.95,
                    step=0.05,
                    interactive=True,
                    visible=False,
                    label="Penalty alpha",
                    info="Only used if `decoding_strategy` is `contrastive_sampling`.",
                )
                decoding_strategy.change(
                    fn=lambda selection: gr.Slider.update(visible=(selection in ["contrastive_sampling"])),
                    inputs=decoding_strategy,
                    outputs=penalty_alpha,
                )

        with gr.Column(scale=6):

            def prefetch_images_in_history(user_prompt_str):
                """
                Pre-fetch the images that are passed in the chatbot default history.
                """
                return user_prompt_list_to_markdown(handle_manual_images_in_user_prompt(user_prompt_str))

            chatbot = gr.Chatbot(
                elem_id="chatbot",
                label="ChatIDEFICS",
                visible=True,
                height=550,
                value=[
                    [
                        (
                            prefetch_images_in_history(
                                """Write a funny story including the following characters.
There should be drama and most importantly romance.
Character 1:<fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BODg1OTczMWEtNTU3MS00OTUzLThjODEtNDg1MWQwZmExYmFlXkEyXkFqcGdeQWFybm8@._V1_QL75_UX500_CR0,0,500,281_.jpg><fake_token_around_image>
Character 2:<fake_token_around_image><image:https://static.wikia.nocookie.net/dreamworks/images/0/09/Shrek_dreamworks.png/revision/latest?cb=20170921225439><fake_token_around_image>
Character 3:<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/en/e/ef/Marsupilami_1.jpg><fake_token_around_image>
The plot should take place in the world pictured here:<fake_token_around_image><image:https://www.astronomy.com/wp-content/uploads/sites/2/2021/09/ON1.jpg><fake_token_around_image>"""
                            )
                        ),
                        (
                            """Once upon a time, in a world where the sky was a dome and the ground was covered in grass, there lived a beautiful princess named Mulan. She was kind, brave, and always ready to help others. One day, while walking through the forest, she stumbled upon a strange creature. It was a green ogre named Shrek, who was lost and looking for his way back home.

Mulan, being the kind-hearted person she was, decided to help Shrek find his way back. As they traveled together, they began to develop a strong bond. Shrek was impressed by Mulan's bravery and determination, while Mulan admired Shrek's loyalty and sense of humor.

However, their journey was not without obstacles. They encountered a mischievous cat named Hoboua, who was always causing trouble and getting into fights. Despite his troublemaking ways, Hoboua had a good heart and eventually became a valuable ally to Mulan and Shrek.

As they traveled, they faced many challenges, including battling fierce dragons and navigating treacherous mountains. Through it all, Mulan and Shrek grew closer, and their feelings for each other deepened.

Finally, they reached Shrek's home, and he was reunited with his family and friends. Mulan, however, was sad to leave him behind. But Shrek had a surprise for her. He had fallen in love with her and wanted to be with her forever.

Mulan was overjoyed, and they shared a passionate kiss. From that day on, they lived happily ever after, exploring the world together and facing any challenges that came their way.

And so, the story of Mulan and Shrek's romance came to an end, leaving a lasting impression on all who heard it."""
                        ),
                    ],
                ],
            )
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=60):
                    submit_btn = gr.Button(value="Submit", visible=True)
                with gr.Column(scale=1, min_width=20):
                    clear_btn = gr.ClearButton([textbox, chatbot])
                with gr.Column(scale=1, min_width=15):
                    dope_bttn = gr.Button("Dope🔥")
                with gr.Column(scale=1, min_width=15):
                    problematic_bttn = gr.Button("Problematic😬")

    def model_inference(
        user_prompt_str,
        chat_history,
        image,
        decoding_strategy,
        num_beams,
        temperature,
        no_repeat_ngram_size,
        max_new_tokens,
        min_length,
        repetition_penalty,
        length_penalty,
        top_k,
        top_p,
        penalty_alpha,
    ):
        # global processor, model, tokenizer
        print("***********Model_inference*************")
        print(f"Inside Model_inference, user_prompt_str is - {user_prompt_str} ")
        print(f"Inside Model_inference, chat_history is - {chat_history} ")
        print(f"Inside Model_inference, image type is - {type(image)} ")
        print(f"Inside Model_inference, image is - {image} ")

        force_words = ""
        hide_special_tokens = False

        formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
            current_user_prompt_str=user_prompt_str.strip(),
            current_image=image,
            history=chat_history,
        )

        print(f"formated_prompt_list (or resulting_list)  is {formated_prompt_list}")
        print(f"user_prompt_list (or [current_user_prompt_str]) is {user_prompt_list}")
        
        generated_text = model_generation(
            prompt_list=formated_prompt_list,
            processor=processor,
            tokenizer=tokenizer,
            model=model,
            temperature=temperature,
            no_repeat_ngram_size=no_repeat_ngram_size,
            max_new_tokens=max_new_tokens,
            min_length=min_length,
            ban_tokens=BAN_TOKENS,
            eos_tokens=EOS_TOKENS,
            force_words=force_words,
            repetition_penalty=repetition_penalty,
            hide_special_tokens=hide_special_tokens,
            decoding_strategy=decoding_strategy,
            num_beams=num_beams,
            length_penalty=length_penalty,
            top_k=top_k,
            top_p=top_p,
            penalty_alpha=penalty_alpha,
        )

        if image is None:
            # Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
            chat_history.append(
                (user_prompt_list_to_markdown(user_prompt_list), generated_text.strip("<end_of_utterance>"))
            )
            print(f"chat_history (IF image is None or is with fake token) is -{chat_history}")
        else:
            # Case where the image is passed through the Image Box.
            # Convert the image into base64 for both passing it through the chat history and
            # displaying the image inside the same bubble as the text.
            chat_history.append(
                (
                    f"{user_prompt_list_to_markdown([image] + user_prompt_list)}",
                    generated_text.strip("<end_of_utterance>"),
                )
            )
            print(f"chat_history (ELSE IF image is available) is -{chat_history}")
        return "", None, chat_history


    textbox.submit(
        fn=model_inference,
        inputs=[
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        outputs=[textbox, imagebox, chatbot],
    )
    submit_btn.click(
        fn=model_inference,
        inputs=[
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        outputs=[
            textbox,
            imagebox,
            chatbot,
        ],
    )

    # Using Flagging for saving dope and problematic examples
    # Dope examples flagging
    dope_hf_callback.setup(
        [
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        "gradio_dope_data_points"
    )
    dope_bttn.click(
        lambda *args: dope_hf_callback.flag(args),
        [
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        None,
        preprocess=False
    )
    # Problematic examples flagging
    problematic_callback.setup(
        [
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        "gradio_problematic_data_points"
    )
    problematic_bttn.click(
        lambda *args: problematic_callback.flag(args),
        [
            model_selector,
            textbox,
            chatbot,
            imagebox,
            decoding_strategy,
            num_beams,
            temperature,
            no_repeat_ngram_size,
            max_new_tokens,
            min_length,
            repetition_penalty,
            length_penalty,
            top_k,
            top_p,
            penalty_alpha,
        ],
        None,
        preprocess=False
    )


    gr.Markdown(
        """## How to use?

        There are two ways to provide image inputs:
        - Using the image box on the left panel
        - Using the inline syntax: `text<fake_token_around_image><image:URL_IMAGE><fake_token_around_image>text`

        The second syntax allows inputting an arbitrary number of images."""
    )

    examples_path = os.path.dirname(__file__)
    gr.Examples(
        examples=[
            ["What are the armed baguettes guarding?", f"{examples_path}/example_images/baguettes_guarding_paris.png"],
            [
                 "Can you tell me a very short story based on this image?",
                 f"{examples_path}/example_images/chicken_on_money.png",
             ],
            # ["Can you describe the image?", f"{examples_path}/example_images/bear_costume.png"],
            # ["What is this animal and why is it unusual?", f"{examples_path}/example_images/blue_dog.png"],
            # [
            #     "What is this object and do you think it is horrifying?",
            #     f"{examples_path}/example_images/can_horror.png",
            # ],
            # ["What is this sketch for? How would you make an argument to prove this sketch was made by Picasso himself?", f"{examples_path}/example_images/cat_sketch.png"],
            # ["Which celebrity does this claymation figure look like?", f"{examples_path}/example_images/kanye.jpg"],
            # [
            #     "Which famous person does the person in the image look like? Could you craft an engaging narrative featuring this character from the image as the main protagonist?",
            #     f"{examples_path}/example_images/obama-harry-potter.jpg",
            # ],
            # [
            #     "Is there a celebrity look-alike in this image? What is happening to the person?",
            #     f"{examples_path}/example_images/ryan-reynolds-borg.jpg",
            # ],
            # ["Can you describe this image in details please?", f"{examples_path}/example_images/dragons_playing.png"],
            # ["What can you tell me about the cap in this image?", f"{examples_path}/example_images/ironman_cap.png"],
            # [
            #     "Can you write an advertisement for Coca-Cola based on this image?",
            #     f"{examples_path}/example_images/polar_bear_coke.png",
            # ],
            # [
            #     "What is the rabbit doing in this image? Do you think this image is real?",
            #     f"{examples_path}/example_images/rabbit_force.png",
            # ],
            # ["What is happening in this image and why is it unusual?", f"{examples_path}/example_images/ramen.png"],
            # [
            #     "What I should look most forward to when I visit this place?",
            #     f"{examples_path}/example_images/tree_fortress.jpg",
            # ],
            # ["Who is the person in the image and what is he doing?", f"{examples_path}/example_images/tom-cruise-astronaut-pegasus.jpg"],
            # [
            #     "What is happening in this image? Which famous personality does this person in center looks like?",
            #     f"{examples_path}/example_images/gandhi_selfie.jpg",
            # ],
            # [
            #     (
            #         "<fake_token_around_image><image:https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/stable-diffusion-xl-coreml/a_high_quality_photo_of_a_surfing_dog.7667.final_float16_original.jpg><fake_token_around_image>What"
            #         " do you think the dog is doing and is it unusual?"
            #     ),
            #     None,
            # ],
        ],
        inputs=[textbox, imagebox],
        outputs=[textbox, imagebox, chatbot],
        fn=process_example,
        cache_examples=True,
        examples_per_page=5,
        label="Click on any example below to get started",
    )

demo.queue()
demo.launch(share=False)