Spaces:
Build error
Build error
File size: 48,370 Bytes
e7d3e35 aea3b22 668f68a aea3b22 e1926be 29de147 aea3b22 668f68a 29de147 668f68a 29de147 668f68a 29de147 4192a3f 668f68a e04700c aea3b22 e7d3e35 aea3b22 e1926be aea3b22 668f68a aea3b22 668f68a 4192a3f aea3b22 668f68a e04700c e7d3e35 5225464 e7d3e35 5225464 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e7d3e35 aea3b22 e1926be aea3b22 e1926be e7d3e35 aea3b22 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 5225464 e7d3e35 ddc7b1b 6934ad9 e7d3e35 5225464 e7d3e35 668f68a e7d3e35 668f68a e7d3e35 668f68a e7d3e35 5b75fd3 e7d3e35 e1926be f2b007d e7d3e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
import base64
import copy
import logging
import os
import re
from io import BytesIO
from typing import List, Optional, Tuple, Union
from urllib.parse import urlparse
import gradio as gr
import PIL
from accelerate.utils import get_max_memory, set_seed
from PIL import Image
from transformers import AutoConfig, AutoProcessor, IdeficsForVisionText2Text
MODELS = [
"HuggingFaceM4/idefics-9b-instruct",
"HuggingFaceM4/idefics-80b-instruct",
]
SYSTEM_PROMPT = [
"""The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
The conversation begins:""",
"""\nUser:<fake_token_around_image><image:https://i1.pickpik.com/photos/515/906/355/kittens-cats-pet-cute-preview.jpg><fake_token_around_image>Describe this image.<end_of_utterance>""",
"""\nAssistant: Five kittens are standing together in the center of the photograph. From the left to right, there is one orange kitten, two kittens white and black stripes, and two brown kittens with an orange head. They are in bright green grass and it looks like they are moving forward.<end_of_utterance>""",
(
"\nUser:How about this"
" image?<fake_token_around_image><image:https://cdn.pixabay.com/photo/2017/09/25/13/12/puppy-2785074_1280.jpg><fake_token_around_image>Can"
" you describe it too?<end_of_utterance>"
),
"""\nAssistant: A dog is lying on the floor, looking at the camera. It is looking directly at you. The dog has a white body and brown patches on its face and ears. Its eyes are dark. Its nose is black, and it has long, floppy ears, white paws, long fur, big eyes.<end_of_utterance>""",
"\nUser: What kind of breed is it?<end_of_utterance>",
"""\nAssistant: It looks like a Cavalier King Charles Spaniel. These breeds are known for their gentle, affectionate nature. Their long ears and big, brown eyes give them a sweet, expressive face. Cavaliers are small dogs weighing between 13 and 20 pounds. They have a silky, medium-length coat that comes in various colors, including black and tan, tricolor, red and white, or black.<end_of_utterance>""",
"\nUser: What can you tell me about this breed of dogs?<end_of_utterance>",
"""\nAssistant: One specific characteristic of the Cavalier King Charles Spaniel is its friendly and affectionate nature. This breed is known for being extremely sociable and forming strong bonds with their owners. They are often described as "velcro dogs" because they love to be close to their human companions, whether it's sitting on their laps, cuddling on the couch, or simply following them around the house.<end_of_utterance>""",
"\nUser: ghjkhjabnufs<end_of_utterance>",
"""\nAssistant: That doesn’t seem to be a word. Could you ask me another way?<end_of_utterance>""",
"\nUser: Do you like Cavalier King Charles Spaniel?<end_of_utterance>\n",
"""\nAssistant: I do not have personal opinions as I’m just a computer program. However, cavaliers are known for being excellent family pets due to their gentle and patient demeanor, making them great with children and other pets. Their affectionate nature also makes them ideal therapy dogs, as they can provide comfort and emotional support to those in need.<end_of_utterance>""",
(
"\nUser: How many dogs do you see in this"
" image?<fake_token_around_image><image:https://i.dailymail.co.uk/i/pix/2011/07/01/article-2010308-0CD22A8300000578-496_634x414.jpg><fake_token_around_image><end_of_utterance>"
),
"""\nAssistant: There is no dogs in this image. The picture shows a tennis player jumping to volley the ball.<end_of_utterance>""",
]
BAN_TOKENS = "<image>;<fake_token_around_image>"
EOS_TOKENS = "</s>;<end_of_utterance>;User"
TOKENIZER_FAST = True
MAX_SEQ_LEN = 2048
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
SEED = 38
set_seed(38)
import requests
from io import BytesIO
import uuid
from PIL import Image
from PIL import Image
import tempfile
def convert_to_rgb_pil(image):
print(f"***** convert_to_rgb_pil ******")
print(f"params: image is - {image}")
#if image.mode == "RGB":
# return image
# Save the converted image to a temporary file
#temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#temp_file_path = temp_file.name
filename = f"{uuid.uuid4()}.jpg"
local_path = f"{filename}"
if image.mode != "RGB":
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
alpha_composite.save(local_path)
else:
image.save(local_path)
#temp_file.close()
print(f"# Return the path to the saved image as - {local_path}")
return local_path # Return the path to the saved image
def convert_to_rgb(filepath_or_pilimg):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
print(f"***** convert_to_rgb ******")
print(f"params: image is - {filepath_or_pilimg}")
if isinstance(filepath_or_pilimg, PIL.Image.Image):
return convert_to_rgb_pil(filepath_or_pilimg)
with Image.open(filepath_or_pilimg) as image:
# Check if the image is already in the RGB format
if image.mode == "RGB":
return filepath_or_pilimg # If already in RGB, return the original path
# Convert image to RGBA
image_rgba = image.convert("RGBA")
# Create a white background image of the same size
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
# Composite the original image over the white background
alpha_composite = Image.alpha_composite(background, image_rgba)
# Convert the composited image to RGB format
alpha_composite = alpha_composite.convert("RGB")
# Save the converted image to a temporary file
filename = f"{uuid.uuid4()}.jpg"
local_path = f"{filename}"
#temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#temp_file_path = temp_file.name
alpha_composite.save(local_path)
#temp_file.close()
print(f"# Return the path to the saved image as - {local_path}")
return local_path # Return the path to the saved image
def pil_to_markdown_im(image):
"""
Convert a PIL image into markdown filled with the base64 string representation.
"""
print(f"***** pil_to_markdown_im ******")
print(f"params: image is - {image}")
#if isinstance(image, PIL.Image.Image):
#img_b64_str = pil_to_base64(image)
#img_str = f'<img src="data:image/png;base64,{img_b64_str}" />'
#if path_or_url.startswith(("http://", "https://")):
#response = requests.get(image)
#image = Image.open(BytesIO(response.content))
# Generate a unique filename using UUID
filename = f"{uuid.uuid4()}.jpg"
local_path = f"{filename}"
image.save(local_path)
img_str = f"![](/file={local_path})"
return img_str
def base64_to_pil(encoded_image):
decoded_image = base64.b64decode(encoded_image)
pil_image = Image.open(BytesIO(decoded_image))
return pil_image
def im_markdown_to_pil(im_markdown_str):
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
match = re.search(pattern, im_markdown_str)
img_b64_str = match.group(1)
return base64_to_pil(img_b64_str)
def split_str_on_im_markdown(string_with_potential_im_markdown):
"""
Extract from a string (typically the user prompt string) the potentional images saved as a base64 representation
inside a markdown.
"""
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
parts = re.split(pattern, string_with_potential_im_markdown)
result = []
for i, part in enumerate(parts):
if i % 2 == 0:
result.append(part)
else:
img_tag = f'<img src="data:image/png;base64,{part.strip()}" />'
result.append(img_tag)
return result
# Fetching utils
def is_url(string):
"""
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url
"""
if " " in string:
return False
result = urlparse(string)
return all([result.scheme, result.netloc])
def isolate_images_urls(prompt_list):
"""
Convert a full string prompt to the list format expected by the processor.
In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
From:
```
[
"bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
PIL.Image.Image,
"Aurevoir",
]
```
to:
```
[
"bonjour",
IMG_URL,
"hello",
PIL.Image.Image,
"Aurevoir",
]
```
"""
print(f"******* isolate_images_urls *******")
print(f"params: prompt_list is - {prompt_list}")
linearized_list = []
for prompt in prompt_list:
print(f"inside FOR loop: prompt in prompt_list is - {prompt}")
# Prompt can be either a string, or a PIL image
if isinstance(prompt, PIL.Image.Image):
print(f"inside first IF in FOR loop: prompt is of type PIL.Image.Image")
linearized_list.append(prompt)
print(f"linearized_list after append is - {linearized_list}")
elif isinstance(prompt, str) and "/tmp/gradio/" in prompt: #isinstance(prompt, PIL.Image.Image):
print(f"inside IF in FOR loop: prompt is a string and is a path for temporary file")
linearized_list.append(prompt)
print(f"linearized_list after append is - {linearized_list}")
elif isinstance(prompt, str) and "/tmp/gradio/" not in prompt:
print(f"inside ELIF in FOR loop: prompt is a string and is NOT a path for temporary file")
if "<fake_token_around_image>" not in prompt:
print(f"inside IF inside ELIF in FOR loop: '<fake_token_around_image>' is NOT in prompt")
linearized_list.append(prompt)
print(f"linearized_list after append is - {linearized_list}")
else:
print(f"inside ELSE inside ELIF in FOR loop: '<fake_token_around_image>' IS IN prompt")
prompt_splitted = prompt.split("<fake_token_around_image>")
print(f"prompt_splitted is - {prompt_splitted}")
for ps in prompt_splitted:
print(f"Inside FOR loop inside FOR loop: ps in prompt_split is {ps}")
if ps == "":
continue
if ps.startswith("<image:"):
linearized_list.append(ps[7:-1])
else:
linearized_list.append(ps)
else:
raise TypeError(
f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
" `PIL.Image.Image`]"
)
print(f"linearized_list to be returned is - {linearized_list}")
return linearized_list
# Chatbot handling utils
def handle_manual_images_in_user_prompt(user_prompt: str) -> List[Union[str, PIL.Image.Image]]:
"""
Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
by fetching them and replacing the whole sub-sequence by a PIL image.
"""
if "<fake_token_around_image>" in user_prompt:
splitted_user_prompt = isolate_images_urls([user_prompt])
resulting_user_prompt = []
for up in splitted_user_prompt:
if is_url(up):
img = processor.image_processor.fetch_images([up])[0]
resulting_user_prompt.append(img)
else:
resulting_user_prompt.append(up)
return resulting_user_prompt
else:
return [user_prompt]
def user_prompt_list_to_markdown(user_prompt_list: List[Union[str, PIL.Image.Image]]):
"""
Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
the markdown format that is used for the chatbot history and rendering.
"""
print("********** user_prompt_list_to_markdown *********")
print(f" param : user_prompt_list is - {user_prompt_list}")
resulting_string = ""
for elem in user_prompt_list:
print(f"inside user_prompt_list_to_markdown, for loop on user_prompt_list")
print(f"elem is - {elem} ")
if isinstance(elem, str):
if "/tmp/gradio/" not in elem:
resulting_string += elem
print(f"inside IF - when elem is string and is not temp image filepath. resulting_string is - {resulting_string}")
elif "/tmp/gradio/" in elem:
resulting_string += f"![](/file={convert_to_rgb(elem)})"
print(f"inside IF - when elem is string and is a temp image filepath. resulting_string is - {resulting_string}")
#elif isinstance(elem, str) and "/tmp/gradio/" in elem:
# resulting_string += f"![](/file={convert_to_rgb(elem)})" #f"![](/file={image})"
# print(f"inside first ELIF - when elem is string and is the temp image filepath. resulting_string is - {resulting_string}")
elif isinstance(elem, PIL.Image.Image): #or "/tmp/gradio/" in elem: #and "/tmp/gradio/" in elem:
resulting_string += f"![](/file={convert_to_rgb(elem)})" #pil_to_markdown_im(convert_to_rgb(elem)) <---------------
print(f"inside the ELIF - when elem is an instance of PIL.Image.Image. The resulting_string after convert_to_rgb() operation is - {resulting_string}")
else:
raise ValueError(
"Unknown type for `user_prompt_list`. Expected an element of type `str` or `PIL.Image.Image` and got"
f" `{type(elem)}`"
)
print(f" final resulting_string that will be returned is - {resulting_string}")
return resulting_string
def remove_spaces_around_token(text):
pattern = r'\s*(<fake_token_around_image>)\s*'
replacement = r'\1'
result = re.sub(pattern, replacement, text)
return result
# Model and generation utils
def load_processor_tokenizer_model(model_name):
processor = AutoProcessor.from_pretrained(
model_name,
token=os.getenv("HF_AUTH_TOKEN", True),
truncation_side="left",
)
tokenizer = processor.tokenizer
config = AutoConfig.from_pretrained(model_name, use_auth_token=os.getenv("HF_AUTH_TOKEN", True))
max_memory_map = get_max_memory()
for key in max_memory_map.keys():
if key != "cpu":
# Get this in GB
max_memory_map[key] = max_memory_map[key] // (1024 * 1024 * 1024)
# Decrease 2 for Pytorch overhead and 2 for the forward to be safe
max_memory_map[key] = f"{max_memory_map[key] - 4} GiB"
model = IdeficsForVisionText2Text.from_pretrained(
model_name,
token=os.getenv("HF_AUTH_TOKEN", True),
device_map="auto",
offload_folder="./offload",
torch_dtype=config.torch_dtype,
max_memory=max_memory_map,
)
model.eval()
print("Current device map:", model.hf_device_map)
print("Model default generation config:", model.generation_config)
# TODO: the device_map looks very inefficien right now. that could be improved
return processor, tokenizer, model
def format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str: str, current_image: Optional[PIL.Image.Image], history: List[Tuple[str, str]]
) -> List[Union[str, PIL.Image.Image]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image box input, the history and the system conditionning.
"""
print(f"*********format_user_prompt_with_im_history_and_system_conditioning*********")
print(f"format_user_prompt_with_im_history_and_system_conditioning -- param current_user_prompt_str is - {current_user_prompt_str} ")
print(f"format_user_prompt_with_im_history_and_system_conditioning -- param current_image is - {current_image} ")
print(f"format_user_prompt_with_im_history_and_system_conditioning -- param history is - {history} ")
resulting_list = copy.deepcopy(SYSTEM_PROMPT)
# Format history
for turn in history:
print(f"inside for loop, turn is - {turn}")
user_utterance, assistant_utterance = turn
print("calling split_str_on_im_markdown from inside for loop inside format_user_prompt_with_im_history_and_system_conditioning")
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
print(f"splitted_user_utterance from split_str_on_im_markdown is - {splitted_user_utterance} ")
splitted_user_utterance = [
im_markdown_to_pil(s) if s.startswith('<img src="data:image/png;base64,') else s
for s in splitted_user_utterance
if s != ""
]
print(f"splitted_user_utterance after im_markdown_to_pil() is - {splitted_user_utterance} ")
if isinstance(splitted_user_utterance[0], str):
resulting_list.append("\nUser: ")
else:
resulting_list.append("\nUser:")
print(f"resulting_list after if..else block is - {resulting_list}")
resulting_list.extend(splitted_user_utterance)
print(f"resulting_list after extend is - {resulting_list}")
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
print(f"resulting_list after append is - {resulting_list}")
# Format current input
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
print(f"current_user_prompt_str is - {current_user_prompt_str}")
if current_image is None:
print("inside IF : current_image is NONE")
if "<img src=data:image/png;base64" in current_user_prompt_str:
raise ValueError("The UI does not support inputing via the text box an image in base64.")
current_user_prompt_list = handle_manual_images_in_user_prompt(current_user_prompt_str)
print(f"current_user_prompt_list (or [user_prompt]/resulting_user_prompt((most likely this one)) from handle_manual_images_in_user_prompt ) is - {current_user_prompt_list}")
resulting_list.append("\nUser: ")
print(f"resulting_list with append user - {resulting_list}")
resulting_list.extend(current_user_prompt_list)
print(f"resulting_list after extend with current_user_prompt_list is - {resulting_list}")
resulting_list.append("<end_of_utterance>\nAssistant:")
print(f"resulting_list after append with end_of_utteranceAssistant is - {resulting_list}")
return resulting_list, current_user_prompt_list
else:
print("inside ELSE : current_image is not NONE")
# Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
resulting_list.extend(["\nUser:", Image.open(current_image), f"{current_user_prompt_str}<end_of_utterance>\nAssistant:"]) #current_image
print(f"final resulting_list passed on to calling function is - {resulting_list}")
return resulting_list, [current_user_prompt_str]
def model_generation(
prompt_list,
processor,
tokenizer,
model,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
ban_tokens,
eos_tokens,
force_words,
repetition_penalty,
hide_special_tokens,
decoding_strategy,
num_beams,
length_penalty,
top_k,
top_p,
penalty_alpha,
):
input_args = processor(
isolate_images_urls(prompt_list),
truncation=True,
max_length=MAX_SEQ_LEN - max_new_tokens,
padding=True,
add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
)
for k, v in input_args.items():
input_args[k] = v.to(0)
# Excluding some words from the generation
bad_words_ids = None
ban_tokens = ban_tokens.replace("\\n", "\n")
bad_words = ban_tokens.split(";")
if len(bad_words) > 0:
bad_words_ids = tokenizer(bad_words, add_special_tokens=False).input_ids
# Forcing some words in the generation
force_words_ids = None
if force_words != "":
force_words = force_words.replace("\\n", "\n")
force_words = force_words.split(";")
if len(force_words) > 0:
force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids
eos_token_ids = None
if eos_tokens != "":
eos_tokens = eos_tokens.replace("\\n", "\n")
eos_tokens = eos_tokens.split(";")
if len(eos_tokens) > 0:
eos_token_ids = []
for eos_token in eos_tokens:
tokenized_eos_token = tokenizer.convert_tokens_to_ids(eos_token)
if tokenized_eos_token == 0: # <unk> with our llama tokenizer
raise ValueError(f"Unknown tokens specified for exit condition.")
eos_token_ids += [tokenized_eos_token]
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"no_repeat_ngram_size": no_repeat_ngram_size,
"max_new_tokens": max_new_tokens,
"min_length": min_length,
"bad_words_ids": bad_words_ids,
"force_words_ids": force_words_ids,
"repetition_penalty": repetition_penalty,
"eos_token_id": eos_token_ids,
}
assert decoding_strategy in [
"Greedy",
"beam_search",
"beam_sampling",
"sampling_top_k",
"Top P Sampling",
"contrastive_sampling",
]
if decoding_strategy == "Greedy":
pass
elif decoding_strategy == "beam_search":
generation_args["num_beams"] = num_beams
generation_args["length_penalty"] = length_penalty
assert generation_args["num_beams"] > 1
elif decoding_strategy == "beam_sampling":
generation_args["temperature"] = temperature
generation_args["num_beams"] = num_beams
generation_args["length_penalty"] = length_penalty
generation_args["do_sample"] = True
assert generation_args["num_beams"] > 1
elif decoding_strategy == "sampling_top_k":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_k"] = top_k
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
elif decoding_strategy == "contrastive_sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["penalty_alpha"] = penalty_alpha
generation_args["top_k"] = top_k
generated_tokens = model.generate(
**input_args,
**generation_args,
)
tokens = tokenizer.convert_ids_to_tokens(generated_tokens[0])
decoded_skip_special_tokens = repr(
tokenizer.batch_decode(generated_tokens, skip_special_tokens=hide_special_tokens)[0]
)
actual_generated_tokens = generated_tokens[:, input_args["input_ids"].shape[-1] :]
first_end_token = len(actual_generated_tokens[0])
actual_generated_tokens = actual_generated_tokens[:, :first_end_token]
generated_text = tokenizer.batch_decode(actual_generated_tokens, skip_special_tokens=hide_special_tokens)[0]
logger.info(
"Result: \n"
f"----Prompt: `{prompt_list}`\n"
f"----Tokens ids - prompt + generation: `{generated_tokens[0].tolist()}`\n"
f"----Tokens converted - prompt + generation: `{tokens}`\n"
f"----String decoded with skipped special tokens - prompt + generation: `{decoded_skip_special_tokens}`\n"
f"----Total length - prompt + generation `{len(generated_tokens[0].tolist())}`\n"
f"----Token ids - generation: `{actual_generated_tokens[0].tolist()}`\n"
f"----Tokens converted - generation: `{tokenizer.convert_ids_to_tokens(actual_generated_tokens[0])}`\n"
f"----String decoded with skipped special tokens - generation: `{generated_text}`\n"
f"----Total length - generation: `{len(actual_generated_tokens[0].tolist())}`\n"
f"----Generation mode: `{decoding_strategy}`\n"
f"----Generation parameters: `{generation_args}`\n"
)
return generated_text
def process_example(message, image):
print("********* process_example **********")
clear_msg, image_value, chat = model_inference(
user_prompt_str=message,
chat_history=[],
image=image,
decoding_strategy="Greedy",
num_beams=None,
temperature=None,
no_repeat_ngram_size=None,
max_new_tokens=512,
min_length=16,
repetition_penalty=None,
length_penalty=None,
top_k=None,
top_p=0.95,
penalty_alpha=None,
)
return clear_msg, image_value, chat
dope_callback = gr.CSVLogger()
dope_hf_callback = gr.HuggingFaceDatasetSaver(
hf_token=os.getenv("HF_AUTH_TOKEN"),
dataset_name="HuggingFaceM4/gradio_dope_data_points",
private=True,
)
problematic_callback = gr.CSVLogger()
textbox = gr.Textbox(
show_label=False,
value="Describe the battle against the fierce dragons.",
visible=True,
container=False,
label="Text input",
)
with gr.Blocks(title="IDEFICS-Chat", theme=gr.themes.Base()) as demo:
gr.Markdown(
"""
# IDEFICS
This is a demo for [IDEFICS](https://huggingface.co/HuggingFaceM4/idefics-80b), a open-access large visual lanugage model built built solely on publicly available data and models.
<br>Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs.
<br>IDEFICS (which stans for **I**mage-aware **D**ecoder **E**nhanced à la **F**lamingo with **I**nterleaved **C**ross-attention**S**) is an open-access reproduction of [Flamingo](https://huggingface.co/papers/2204.14198), a closed-source visual language model developed by Deepmind.
The [model cards](https://huggingface.co/HuggingFaceM4/idefics-80b) and [dataset card](https://huggingface.co/datasets/HuggingFaceM4/OBELISC) provide plenty of information about the model and training data.
<br>We provide an [interactive visualization](https://atlas.nomic.ai/map/f2fba2aa-3647-4f49-a0f3-9347daeee499/ee4a84bd-f125-4bcc-a683-1b4e231cb10f) (TODO: change to official link when have it) that allows exploring the content of the training data.
<br>You can also [read more about](https://github.com/huggingface/m4-logs/blob/master/memos/README.md) some of the technical challenges encountered during training IDEFICS.
"""
)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS,
value="HuggingFaceM4/idefics-9b-instruct",
interactive=True,
show_label=False,
container=False,
label="Model"
)
processor, tokenizer, model = load_processor_tokenizer_model(model_selector.value)
imagebox = gr.Image(type="filepath", label="Image input")
with gr.Accordion("Advanced parameters", open=False, visible=True) as parameter_row:
max_new_tokens = gr.Slider(
minimum=0,
maximum=2048,
value=512,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
min_length = gr.Slider(
minimum=0,
maximum=50,
value=0,
step=1,
interactive=True,
label="Minimum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.0,
step=0.1,
interactive=True,
label="Repetition penalty",
info="1.0 means no penalty",
)
no_repeat_ngram_size = gr.Slider(
minimum=0,
maximum=10,
value=0,
step=1,
interactive=True,
label="N-gram repetition threshold",
info="If set to int > 0, all ngrams of that size can only occur once.",
)
decoding_strategy = gr.Radio(
[
"Greedy",
# "beam_search",
# "beam_sampling",
# "sampling_top_k",
"Top P Sampling",
],
value="Top P Sampling",
label="Decoding strategy",
interactive=True,
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.2,
step=0.1,
interactive=True,
label="Sampling temperature",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(
visible=(
selection in ["contrastive_sampling", "beam_sampling", "Top P Sampling", "sampling_top_k"]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
num_beams = gr.Slider(
minimum=0,
maximum=20,
value=3.0,
step=1.0,
interactive=True,
visible=False,
label="Number of beams",
info="Only used if `decoding_strategy` is `beam_search` or `beam_sampling`.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
inputs=decoding_strategy,
outputs=num_beams,
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.01,
interactive=True,
visible=True,
label="Top P",
info=(
"If set to float < 1, only the smallest set of most probable tokens with probabilities that"
" add up to top_p or higher are kept for generation."
),
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
top_k = gr.Slider(
minimum=0,
maximum=500,
value=50,
step=1,
interactive=True,
visible=False,
label="Top K",
info="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["sampling_top_k"])),
inputs=decoding_strategy,
outputs=top_k,
)
length_penalty = gr.Slider(
minimum=-1000.0,
maximum=1000.0,
value=1.0,
step=0.1,
interactive=True,
visible=False,
label="Length penalty",
info=(
"length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter"
" sequences. Only used if `decoding_strategy` is `beam_search` or `beam_sampling`."
),
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["beam_search", "beam_sampling"])),
inputs=decoding_strategy,
outputs=length_penalty,
)
penalty_alpha = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.95,
step=0.05,
interactive=True,
visible=False,
label="Penalty alpha",
info="Only used if `decoding_strategy` is `contrastive_sampling`.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(visible=(selection in ["contrastive_sampling"])),
inputs=decoding_strategy,
outputs=penalty_alpha,
)
with gr.Column(scale=6):
def prefetch_images_in_history(user_prompt_str):
"""
Pre-fetch the images that are passed in the chatbot default history.
"""
return user_prompt_list_to_markdown(handle_manual_images_in_user_prompt(user_prompt_str))
chatbot = gr.Chatbot(
elem_id="chatbot",
label="ChatIDEFICS",
visible=True,
height=550,
value=[
[
(
prefetch_images_in_history(
"""Write a funny story including the following characters.
There should be drama and most importantly romance.
Character 1:<fake_token_around_image><image:https://m.media-amazon.com/images/M/MV5BODg1OTczMWEtNTU3MS00OTUzLThjODEtNDg1MWQwZmExYmFlXkEyXkFqcGdeQWFybm8@._V1_QL75_UX500_CR0,0,500,281_.jpg><fake_token_around_image>
Character 2:<fake_token_around_image><image:https://static.wikia.nocookie.net/dreamworks/images/0/09/Shrek_dreamworks.png/revision/latest?cb=20170921225439><fake_token_around_image>
Character 3:<fake_token_around_image><image:https://upload.wikimedia.org/wikipedia/en/e/ef/Marsupilami_1.jpg><fake_token_around_image>
The plot should take place in the world pictured here:<fake_token_around_image><image:https://www.astronomy.com/wp-content/uploads/sites/2/2021/09/ON1.jpg><fake_token_around_image>"""
)
),
(
"""Once upon a time, in a world where the sky was a dome and the ground was covered in grass, there lived a beautiful princess named Mulan. She was kind, brave, and always ready to help others. One day, while walking through the forest, she stumbled upon a strange creature. It was a green ogre named Shrek, who was lost and looking for his way back home.
Mulan, being the kind-hearted person she was, decided to help Shrek find his way back. As they traveled together, they began to develop a strong bond. Shrek was impressed by Mulan's bravery and determination, while Mulan admired Shrek's loyalty and sense of humor.
However, their journey was not without obstacles. They encountered a mischievous cat named Hoboua, who was always causing trouble and getting into fights. Despite his troublemaking ways, Hoboua had a good heart and eventually became a valuable ally to Mulan and Shrek.
As they traveled, they faced many challenges, including battling fierce dragons and navigating treacherous mountains. Through it all, Mulan and Shrek grew closer, and their feelings for each other deepened.
Finally, they reached Shrek's home, and he was reunited with his family and friends. Mulan, however, was sad to leave him behind. But Shrek had a surprise for her. He had fallen in love with her and wanted to be with her forever.
Mulan was overjoyed, and they shared a passionate kiss. From that day on, they lived happily ever after, exploring the world together and facing any challenges that came their way.
And so, the story of Mulan and Shrek's romance came to an end, leaving a lasting impression on all who heard it."""
),
],
],
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=True)
with gr.Column(scale=1, min_width=20):
clear_btn = gr.ClearButton([textbox, chatbot])
with gr.Column(scale=1, min_width=15):
dope_bttn = gr.Button("Dope🔥")
with gr.Column(scale=1, min_width=15):
problematic_bttn = gr.Button("Problematic😬")
def model_inference(
user_prompt_str,
chat_history,
image,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
):
# global processor, model, tokenizer
print("***********Model_inference*************")
print(f"Inside Model_inference, user_prompt_str is - {user_prompt_str} ")
print(f"Inside Model_inference, chat_history is - {chat_history} ")
print(f"Inside Model_inference, image type is - {type(image)} ")
print(f"Inside Model_inference, image is - {image} ")
force_words = ""
hide_special_tokens = False
formated_prompt_list, user_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
print(f"formated_prompt_list (or resulting_list) is {formated_prompt_list}")
print(f"user_prompt_list (or [current_user_prompt_str]) is {user_prompt_list}")
generated_text = model_generation(
prompt_list=formated_prompt_list,
processor=processor,
tokenizer=tokenizer,
model=model,
temperature=temperature,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_new_tokens,
min_length=min_length,
ban_tokens=BAN_TOKENS,
eos_tokens=EOS_TOKENS,
force_words=force_words,
repetition_penalty=repetition_penalty,
hide_special_tokens=hide_special_tokens,
decoding_strategy=decoding_strategy,
num_beams=num_beams,
length_penalty=length_penalty,
top_k=top_k,
top_p=top_p,
penalty_alpha=penalty_alpha,
)
if image is None:
# Case where there is no image OR the image is passed as `<fake_token_around_image><image:IMAGE_URL><fake_token_around_image>`
chat_history.append(
(user_prompt_list_to_markdown(user_prompt_list), generated_text.strip("<end_of_utterance>"))
)
print(f"chat_history (IF image is None or is with fake token) is -{chat_history}")
else:
# Case where the image is passed through the Image Box.
# Convert the image into base64 for both passing it through the chat history and
# displaying the image inside the same bubble as the text.
chat_history.append(
(
f"{user_prompt_list_to_markdown([image] + user_prompt_list)}",
generated_text.strip("<end_of_utterance>"),
)
)
print(f"chat_history (ELSE IF image is available) is -{chat_history}")
return "", None, chat_history
textbox.submit(
fn=model_inference,
inputs=[
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
outputs=[textbox, imagebox, chatbot],
)
submit_btn.click(
fn=model_inference,
inputs=[
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
outputs=[
textbox,
imagebox,
chatbot,
],
)
# Using Flagging for saving dope and problematic examples
# Dope examples flagging
dope_hf_callback.setup(
[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
"gradio_dope_data_points"
)
dope_bttn.click(
lambda *args: dope_hf_callback.flag(args),
[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
None,
preprocess=False
)
# Problematic examples flagging
problematic_callback.setup(
[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
"gradio_problematic_data_points"
)
problematic_bttn.click(
lambda *args: problematic_callback.flag(args),
[
model_selector,
textbox,
chatbot,
imagebox,
decoding_strategy,
num_beams,
temperature,
no_repeat_ngram_size,
max_new_tokens,
min_length,
repetition_penalty,
length_penalty,
top_k,
top_p,
penalty_alpha,
],
None,
preprocess=False
)
gr.Markdown(
"""## How to use?
There are two ways to provide image inputs:
- Using the image box on the left panel
- Using the inline syntax: `text<fake_token_around_image><image:URL_IMAGE><fake_token_around_image>text`
The second syntax allows inputting an arbitrary number of images."""
)
examples_path = os.path.dirname(__file__)
gr.Examples(
examples=[
["What are the armed baguettes guarding?", f"{examples_path}/example_images/baguettes_guarding_paris.png"],
[
"Can you tell me a very short story based on this image?",
f"{examples_path}/example_images/chicken_on_money.png",
],
["Can you describe the image?", f"{examples_path}/example_images/bear_costume.png"],
["What is this animal and why is it unusual?", f"{examples_path}/example_images/blue_dog.png"],
[
"What is this object and do you think it is horrifying?",
f"{examples_path}/example_images/can_horror.png",
],
["What is this sketch for? How would you make an argument to prove this sketch was made by Picasso himself?", f"{examples_path}/example_images/cat_sketch.png"],
["Which celebrity does this claymation figure look like?", f"{examples_path}/example_images/kanye.jpg"],
[
"Which famous person does the person in the image look like? Could you craft an engaging narrative featuring this character from the image as the main protagonist?",
f"{examples_path}/example_images/obama-harry-potter.jpg",
],
[
"Is there a celebrity look-alike in this image? What is happening to the person?",
f"{examples_path}/example_images/ryan-reynolds-borg.jpg",
],
["Can you describe this image in details please?", f"{examples_path}/example_images/dragons_playing.png"],
["What can you tell me about the cap in this image?", f"{examples_path}/example_images/ironman_cap.png"],
[
"Can you write an advertisement for Coca-Cola based on this image?",
f"{examples_path}/example_images/polar_bear_coke.png",
],
[
"What is the rabbit doing in this image? Do you think this image is real?",
f"{examples_path}/example_images/rabbit_force.png",
],
["What is happening in this image and why is it unusual?", f"{examples_path}/example_images/ramen.png"],
[
"What I should look most forward to when I visit this place?",
f"{examples_path}/example_images/tree_fortress.jpg",
],
["Who is the person in the image and what is he doing?", f"{examples_path}/example_images/tom-cruise-astronaut-pegasus.jpg"],
[
"What is happening in this image? Which famous personality does this person in center looks like?",
f"{examples_path}/example_images/gandhi_selfie.jpg",
],
[
(
"<fake_token_around_image><image:https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/stable-diffusion-xl-coreml/a_high_quality_photo_of_a_surfing_dog.7667.final_float16_original.jpg><fake_token_around_image>What"
" do you think the dog is doing and is it unusual?"
),
None,
],
],
inputs=[textbox, imagebox],
outputs=[textbox, imagebox, chatbot],
fn=process_example,
cache_examples=True,
examples_per_page=5,
label="Click on any example below to get started",
)
demo.queue()
demo.launch(share=False)
|