File size: 4,218 Bytes
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch


def expand_inputs_for_generation(
    input_ids,
    expand_size=1,
    is_encoder_decoder=False,
    attention_mask=None,
    encoder_outputs=None,
    **model_kwargs,
):
    expanded_return_idx = (
        torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
    )
    input_ids = input_ids.index_select(0, expanded_return_idx)

    if "token_type_ids" in model_kwargs:
        token_type_ids = model_kwargs["token_type_ids"]
        model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)

    if attention_mask is not None:
        model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
        model_kwargs["image_attention_mask"] = model_kwargs["image_attention_mask"].index_select(
            0, expanded_return_idx
        )
        model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)

    if is_encoder_decoder:
        if encoder_outputs is None:
            raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
            0, expanded_return_idx.to(encoder_outputs.last_hidden_state.device)
        )
        model_kwargs["encoder_outputs"] = encoder_outputs
    return input_ids, model_kwargs


def update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False):
    # must have this key set to at least None
    model_kwargs["past_key_values"] = model_kwargs.get("past_key_values", None)

    # update past
    if "past_key_values" in outputs:
        model_kwargs["past"] = outputs.past_key_values
    elif "mems" in outputs:
        model_kwargs["past"] = outputs.mems
    elif "past_buckets_states" in outputs:
        model_kwargs["past"] = outputs.past_buckets_states
    else:
        model_kwargs["past"] = None

    # update token_type_ids with last value
    if "token_type_ids" in model_kwargs:
        token_type_ids = model_kwargs["token_type_ids"]
        model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)

    # update attention masks
    if not is_encoder_decoder:
        if "attention_mask" in model_kwargs:
            attention_mask = model_kwargs["attention_mask"]
            model_kwargs["attention_mask"] = torch.cat(
                [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
            )
        if "image_attention_mask" in model_kwargs:
            image_attention_mask = model_kwargs["image_attention_mask"]
            last_mask = image_attention_mask[:, -1, :].unsqueeze(1)
            model_kwargs["image_attention_mask"] = last_mask

    return model_kwargs


def prepare_inputs_for_generation(input_ids, past=None, **kwargs):
    token_type_ids = kwargs.get("token_type_ids", None)
    # only last token for inputs_ids if past is defined in kwargs
    if past:
        input_ids = input_ids[:, -1].unsqueeze(-1)
        if token_type_ids is not None:
            token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

    attention_mask = kwargs.get("attention_mask", None)
    position_ids = kwargs.get("position_ids", None)

    if attention_mask is not None and position_ids is None:
        # create position_ids on the fly for batch generation
        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        if past:
            position_ids = position_ids[:, -1].unsqueeze(-1)

    pixel_values = kwargs.get("pixel_values", None)
    image_attention_mask = kwargs.get("image_attention_mask", None)
    if pixel_values is None or image_attention_mask is None:
        raise ValueError("pixel values and image attention mask cannot be None")

    return {
        "input_ids": input_ids,
        "past_key_values": past,
        "use_cache": kwargs.get("use_cache"),
        "position_ids": position_ids,
        "attention_mask": attention_mask,
        "token_type_ids": token_type_ids,
        "pixel_values": pixel_values,
        "image_attention_mask": image_attention_mask,
    }