Spaces:
Build error
Build error
File size: 11,576 Bytes
e7d3e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# coding=utf-8
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VBloom configuration"""
import os
from typing import Tuple, Union
from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json",
"bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json",
"bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json",
"bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json",
"bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json",
"bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json",
}
class VBloomConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to the Bloom architecture
[bigscience/bloom](https://huggingface.co/bigscience/bloom).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
TODO: this doc is completely out of sync with the actual args
Args:
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the Bloom model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`BloomModel`].
additional_vocab_size (`int`, *optional`, defaults to 0):
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
are always trainable whereas regular vocab tokens can be frozen or not.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
alpha_initializer (`str`, *optional*, defaults to `"ones"`):
Initialization type for the alphas.
alphas_initializer_range (`float`, *optional*, defaults to 0.0):
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention.
alpha_type (`str`, *optional*, defaults to `"vector"`):
Whether the gating alphas should be vectors or single floats.
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
skip_bias_add (`bool`, *optional*, defaults to `True`):
If set to `True`, it will skip bias add for each linear layer in the transformer blocks
skip_bias_add_qkv (`bool`, *optional*, defaults to `False`):
If set to `True`, it will skip bias add for the first linear layer in the transformer blocks
hidden_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate of the dropout function on the bias dropout.
attention_dropout (`float`, *optional*, defaults to 0.1):
Dropout rate applied to the attention probs
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
pretraining_tp (`int`, *optional*, defaults to `1`):
Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when
`slow_but_exact=True`.
slow_but_exact (`bool`, *optional*, defaults to `False`):
Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
merging the TP rank tensors, due to slicing operations the results may be slightly different between the
model trained on Megatron and our model. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to
enable this feature. Enabling this will hurt the computational time of the inference. Will be probably
resolved in the future once the main model has been fine-tuned with TP_rank=1.
Example:
```python
>>> from transformers import BloomModel, BloomConfig
>>> # Initializing a Bloom configuration
>>> configuration = BloomConfig()
>>> # Initializing a model from the configuration
>>> model = BloomModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vbloom"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__(
self,
vocab_size=250880,
additional_vocab_size=0,
hidden_size=64,
n_layer=2,
n_head=8,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
alpha_initializer="ones",
alphas_initializer_range=0.0,
alpha_type="vector",
use_cache=False,
bos_token_id=1,
eos_token_id=2,
apply_residual_connection_post_layernorm=False,
hidden_dropout=0.0,
attention_dropout=0.0,
pretraining_tp=1, # TP rank used when training with megatron
slow_but_exact=False,
cross_layer_interval=1,
tie_word_embeddings=False,
freeze_text_layers=True,
freeze_lm_head=False,
freeze_vision_layers=True,
vision_model_name="google/vit-base-patch16-224",
vision_model_params="{}",
vision_embed_dim=768,
image_token_index=250880,
use_resampler=False,
resampler_n_latents=64,
resampler_depth=6,
resampler_n_heads=16,
resampler_head_dim=96,
**kwargs,
):
self.vocab_size = vocab_size
self.additional_vocab_size = additional_vocab_size
# Backward compatibility with n_embed kwarg
n_embed = kwargs.pop("n_embed", None)
self.hidden_size = hidden_size if n_embed is None else n_embed
self.n_layer = n_layer
self.n_head = n_head
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.alpha_initializer = alpha_initializer
self.alphas_initializer_range = alphas_initializer_range
self.alpha_type = alpha_type
self.use_cache = use_cache
self.pretraining_tp = pretraining_tp
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.slow_but_exact = slow_but_exact
self.cross_layer_interval = cross_layer_interval
self.freeze_vision_layers = freeze_vision_layers
self.vision_model_name = vision_model_name
self.vision_model_params = vision_model_params
self.tie_word_embeddings = tie_word_embeddings
self.freeze_text_layers = freeze_text_layers
self.freeze_lm_head = freeze_lm_head
self.image_token_index = image_token_index
self.vision_embed_dim = vision_embed_dim
# Resampler params
self.use_resampler = use_resampler
self.resampler_n_latents = resampler_n_latents
self.resampler_depth = resampler_depth
self.resampler_n_heads = resampler_n_heads
self.resampler_head_dim = resampler_head_dim
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
# of this object many attributes have default values and haven't yet been overridden.
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
super().__init__(
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
)
def check_compatibilities(self):
if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head):
raise ValueError(
"if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal."
)
vision_model_params = eval(self.vision_model_params)
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
if hasattr(config, "vision_config"):
vison_config = config.vision_config
else:
vison_config = config
vision_embed_dim = vison_config.hidden_size
if self.vision_embed_dim != vision_embed_dim:
raise ValueError(
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
f" ({vision_embed_dim})"
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
outputs = super(VBloomConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
if isinstance(outputs, Tuple):
# When called with return_unused_kwargs=True, the first item will be the config
outputs[0].check_compatibilities()
else:
outputs.check_compatibilities()
return outputs
|