Spaces:
Build error
Build error
#!/usr/bin/env python | |
# This script creates a super tiny model that is useful inside tests, when we just want to test that | |
# the machinery works, without needing to check the quality of the outcomes. | |
# | |
# usage: adjust the configs if wanted, but otherwise just run the script | |
from pathlib import Path | |
from types import SimpleNamespace | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from m4.models.vopt.modeling_vopt import VOPTConfig, VOPTForCausalLM | |
from m4.training.packing import image_attention_mask_for_packed_input_ids, incremental_to_binary_attention_mask | |
from m4.training.utils import get_tokenizer | |
mname_tiny = "tiny-random-vopt-clip" | |
path = Path(mname_tiny) | |
path.mkdir(parents=True, exist_ok=True) | |
# from the hardcoded https://github.com/huggingface/m4/blob/adf102f0000cb2632cd8a3ebb87398c65e448a97/m4/training/main.py#L80 | |
additional_vocab_size = 2 | |
config = VOPTConfig() | |
config.update( | |
dict( | |
ffn_dim=64, | |
hidden_size=16, | |
max_position_embeddings=128, | |
num_attention_heads=4, | |
num_hidden_layers=2, | |
word_embed_proj_dim=16, | |
max_new_tokens=100, | |
use_resampler=True, | |
resampler_depth=2, | |
resampler_head_dim=8, | |
resampler_n_heads=2, | |
resampler_n_latents=16, | |
vision_embed_dim=32, | |
vision_image_size=30, | |
vision_model_name="hf-internal-testing/tiny-random-clip", | |
vision_model_params="{}", | |
vocab_size=50265, | |
additional_vocab_size=additional_vocab_size, | |
) | |
) | |
# print(config) | |
# can now modify config to say tiny values | |
model = VOPTForCausalLM.from_config(config) | |
# print(model.config) | |
# print(model) | |
tokenizer_config = dict( | |
tokenizer_add_special_tokens="{}", | |
tokenizer_add_tokens=( | |
'[AddedToken("<fake_token_around_image>", rstrip=False, lstrip=False), AddedToken("<image>", rstrip=False,' | |
" lstrip=False)]" | |
), | |
tokenizer_name="facebook/opt-13b", | |
tokenizer_params='{"use_fast":True}', | |
) | |
tokenizer_config = SimpleNamespace(**tokenizer_config) | |
# print(tokenizer_config) | |
tokenizer = get_tokenizer( | |
tokenizer_name=tokenizer_config.tokenizer_name, | |
tokenizer_add_tokens=tokenizer_config.tokenizer_add_tokens, | |
tokenizer_add_special_tokens=tokenizer_config.tokenizer_add_special_tokens, | |
tokenizer_params=tokenizer_config.tokenizer_params, | |
additional_vocab_size=model.config.additional_vocab_size, | |
model_vocab_size=model.config.vocab_size, | |
) | |
assert "<image>" in tokenizer.get_vocab() | |
# Test w/ one image and one text | |
query = "<fake_token_around_image><image><fake_token_around_image>This is a picture of a cat." | |
query_tokens = tokenizer(query, return_tensors="pt") | |
num_images_per_ex = 1 | |
pixel_values = transforms.ToTensor()(Image.new("RGB", (30, 30))).repeat(1, 1, 1, 1).unsqueeze(0) | |
image_attention_mask, _ = image_attention_mask_for_packed_input_ids(query_tokens["input_ids"], tokenizer) | |
image_attention_mask = incremental_to_binary_attention_mask(image_attention_mask, num_classes=num_images_per_ex) | |
input = { | |
"input_ids": query_tokens["input_ids"], | |
"attention_mask": query_tokens["attention_mask"], | |
"pixel_values": pixel_values, | |
"pixel_values": pixel_values, | |
"image_attention_mask": image_attention_mask, | |
} | |
# debug shapes | |
# print(query_tokens["input_ids"].shape) | |
# print(query_tokens["attention_mask"].shape) | |
# print(pixel_values.shape) | |
# print(image_attention_mask.shape) | |
out_gen = model.generate(**input) | |
text = tokenizer.batch_decode(out_gen) | |
# print(text) | |
# Save model + config + tokenizer | |
model.half() # makes it smaller | |
model.save_pretrained(path) | |
tokenizer.save_pretrained(path) | |
# test we can load it back | |
model = VOPTForCausalLM.from_pretrained(path) | |
print(f"Generated {mname_tiny} - Upload the generated folder to the hub") | |