Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" OpenAI GPT-2 configuration""" | |
import os | |
from typing import Tuple, Union | |
from transformers import AutoConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json", | |
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json", | |
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json", | |
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json", | |
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json", | |
} | |
class VGPT2Config(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to | |
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the GPT-2 | |
[gpt2](https://huggingface.co/gpt2) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
TODO: this doc is completely out of sync with the actual args | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50257): | |
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`]. | |
additional_vocab_size (`int`, *optional`, defaults to 0): | |
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
are always trainable whereas regular vocab tokens can be frozen or not. | |
n_positions (`int`, *optional*, defaults to 1024): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
n_embd (`int`, *optional*, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
n_head (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
n_inner (`int`, *optional*, defaults to None): | |
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd | |
activation_function (`str`, *optional*, defaults to `"gelu"`): | |
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. | |
resid_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (`int`, *optional*, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (`float`, *optional*, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
alpha_initializer (`str`, *optional*, defaults to `"ones"`): | |
Initialization type for the alphas. | |
alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. | |
alpha_type (`str`, *optional*, defaults to `"vector"`): | |
Whether the gating alphas should be vectors or single floats. | |
summary_type (`string`, *optional*, defaults to `"cls_index"`): | |
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
[`TFGPT2DoubleHeadsModel`]. | |
Has to be one of the following options: | |
- `"last"`: Take the last token hidden state (like XLNet). | |
- `"first"`: Take the first token hidden state (like BERT). | |
- `"mean"`: Take the mean of all tokens hidden states. | |
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). | |
- `"attn"`: Not implemented now, use multi-head attention. | |
summary_use_proj (`bool`, *optional*, defaults to `True`): | |
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
[`TFGPT2DoubleHeadsModel`]. | |
Whether or not to add a projection after the vector extraction. | |
summary_activation (`str`, *optional*): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
[`GPT2DoubleHeadsModel`]. | |
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. | |
summary_proj_to_labels (`bool`, *optional*, defaults to `True`): | |
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
[`TFGPT2DoubleHeadsModel`]. | |
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. | |
summary_first_dropout (`float`, *optional*, defaults to 0.1): | |
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and | |
[`TFGPT2DoubleHeadsModel`]. | |
The dropout ratio to be used after the projection and activation. | |
scale_attn_weights (`bool`, *optional*, defaults to `True`): | |
Scale attention weights by dividing by sqrt(hidden_size).. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): | |
Whether to additionally scale attention weights by `1 / layer_idx + 1`. | |
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): | |
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention | |
dot-product/softmax to float() when training with mixed precision. | |
cross_layer_interval (`int`, *optional*, default to 1) | |
Interval for cross attention (from text to image) layers. | |
Example: | |
```python | |
>>> from transformers import GPT2Model, GPT2Config | |
>>> # Initializing a GPT2 configuration | |
>>> configuration = GPT2Config() | |
>>> # Initializing a model from the configuration | |
>>> model = GPT2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "vgpt2" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = { | |
"hidden_size": "n_embd", | |
"max_position_embeddings": "n_positions", | |
"num_attention_heads": "n_head", | |
"num_hidden_layers": "n_layer", | |
} | |
def __init__( | |
self, | |
vocab_size=50257, | |
additional_vocab_size=0, | |
n_positions=1024, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
n_inner=None, | |
activation_function="gelu_new", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
alpha_initializer="ones", | |
alphas_initializer_range=0.0, | |
alpha_type="vector", | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
scale_attn_weights=True, | |
use_cache=True, | |
bos_token_id=50256, | |
eos_token_id=50256, | |
scale_attn_by_inverse_layer_idx=False, | |
reorder_and_upcast_attn=False, | |
cross_layer_interval=1, | |
tie_word_embeddings=False, | |
freeze_text_layers=True, | |
freeze_lm_head=False, | |
freeze_vision_layers=True, | |
vision_model_name="google/vit-base-patch16-224", | |
vision_model_params="{}", | |
vision_embed_dim=768, | |
vision_image_size=224, | |
image_token_index=50257, | |
use_resampler=False, | |
resampler_n_latents=64, | |
resampler_depth=6, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.additional_vocab_size = additional_vocab_size | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.n_inner = n_inner | |
self.activation_function = activation_function | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.alpha_initializer = alpha_initializer | |
self.alphas_initializer_range = alphas_initializer_range | |
self.alpha_type = alpha_type | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
self.scale_attn_weights = scale_attn_weights | |
self.use_cache = use_cache | |
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx | |
self.reorder_and_upcast_attn = reorder_and_upcast_attn | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
self.cross_layer_interval = cross_layer_interval | |
self.freeze_vision_layers = freeze_vision_layers | |
self.vision_model_name = vision_model_name | |
self.vision_model_params = vision_model_params | |
self.tie_word_embeddings = tie_word_embeddings | |
self.freeze_text_layers = freeze_text_layers | |
self.freeze_lm_head = freeze_lm_head | |
self.image_token_index = image_token_index | |
self.vision_embed_dim = vision_embed_dim | |
self.vision_image_size = vision_image_size | |
# Resampler params | |
self.use_resampler = use_resampler | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.resampler_head_dim = resampler_head_dim | |
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
# updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
# of this object many attributes have default values and haven't yet been overridden. | |
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
super().__init__( | |
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs | |
) | |
def check_compatibilities(self): | |
if self.tie_word_embeddings and (self.freeze_text_layers != self.freeze_lm_head): | |
raise ValueError( | |
"if `tie_word_embeddings` is True, then `freeze_lm_head` and `freeze_text_layers` must be equal." | |
) | |
vision_model_params = eval(self.vision_model_params) | |
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
if hasattr(config, "vision_config"): | |
vision_config = config.vision_config | |
else: | |
vision_config = config | |
vision_embed_dim = vision_config.hidden_size | |
if self.vision_embed_dim != vision_embed_dim: | |
raise ValueError( | |
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
f" ({vision_embed_dim})" | |
) | |
vision_image_size = vision_config.image_size | |
if self.vision_image_size != vision_image_size: | |
raise ValueError( | |
f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
f" ({vision_image_size})" | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
outputs = super(VGPT2Config, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
if isinstance(outputs, Tuple): | |
# When called with return_unused_kwargs=True, the first item will be the config | |
outputs[0].check_compatibilities() | |
else: | |
outputs.check_compatibilities() | |
return outputs | |