Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" OPT model configuration""" | |
import os | |
from typing import Tuple, Union | |
from transformers import AutoConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
OPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"facebook/opt-125m": "https://huggingface.co/facebook/opt-125m/blob/main/config.json", | |
"facebook/opt-350m": "https://huggingface.co/facebook/opt-350m/blob/main/config.json", | |
"facebook/opt-1.3b": "https://huggingface.co/facebook/opt-1.3b/blob/main/config.json", | |
"facebook/opt-2.7b": "https://huggingface.co/facebook/opt-2.7b/blob/main/config.json", | |
"facebook/opt-6.7b": "https://huggingface.co/facebook/opt-6.7b/blob/main/config.json", | |
"facebook/opt-13b": "https://huggingface.co/facebook/opt-13b/blob/main/config.json", | |
} | |
class VOPTConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model | |
according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the OPT | |
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
TODO: this doc is completely out of sync with the actual args | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50272): | |
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`OPTModel`] | |
additional_vocab_size (`int`, *optional`, defaults to 0): | |
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens | |
are always trainable whereas regular vocab tokens can be frozen or not. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of decoder layers. | |
ffn_dim (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
activation_function (`str` or `function`, *optional*, defaults to `"relu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
do_layer_norm_before (`bool`, *optional*, defaults to `True`): | |
Whether to perform layer normalization before the attention block. | |
word_embed_proj_dim (`int`, *optional*): | |
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to | |
`hidden_size`. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
layerdrop: (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more | |
details. | |
init_std (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
alpha_initializer (`str`, *optional*, defaults to `"ones"`): | |
Initialization type for the alphas. | |
alphas_initializer_range (`float`, *optional*, defaults to 0.0): | |
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross Attention. | |
alpha_type (`str`, *optional*, defaults to `"vector"`): | |
Whether the gating alphas should be vectors or single floats. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). | |
cross_layer_interval (`int`, *optional*, default to 1) | |
Interval for cross attention (from text to image) layers. | |
Example: | |
```python | |
>>> from transformers import OPTModel, OPTConfig | |
>>> # Initializing a OPT facebook/opt-large style configuration | |
>>> configuration = OPTConfig() | |
>>> # Initializing a model from the facebook/opt-large style configuration | |
>>> model = OPTModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "vopt" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=50272, | |
additional_vocab_size=0, | |
hidden_size=768, | |
num_hidden_layers=12, | |
ffn_dim=3072, | |
max_position_embeddings=2048, | |
do_layer_norm_before=True, | |
_remove_final_layer_norm=False, | |
word_embed_proj_dim=None, | |
dropout=0.1, | |
attention_dropout=0.0, | |
num_attention_heads=12, | |
activation_function="relu", | |
layerdrop=0.0, | |
init_std=0.02, | |
alpha_initializer="ones", | |
alphas_initializer_range=0.0, | |
alpha_type="vector", | |
use_cache=True, | |
pad_token_id=1, | |
bos_token_id=2, | |
eos_token_id=2, | |
cross_layer_interval=1, | |
cross_layer_activation_function="swiglu", | |
normformer_layer_norms=False, | |
qk_layer_norms=False, | |
rms_norm=False, | |
qk_layer_norms_perceiver=False, | |
tie_word_embeddings=False, | |
freeze_text_layers=True, | |
freeze_text_module_exceptions=[], | |
freeze_lm_head=False, | |
freeze_vision_layers=True, | |
freeze_vision_module_exceptions=[], | |
vision_model_name="google/vit-base-patch16-224", | |
vision_model_params="{}", | |
vision_embed_dim=768, | |
vision_image_size=224, | |
image_token_index=50257, # TODO: change this to right value | |
use_resampler=False, | |
resampler_n_latents=64, | |
resampler_depth=6, | |
resampler_n_heads=16, | |
resampler_head_dim=96, | |
**kwargs, | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.additional_vocab_size = additional_vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.num_attention_heads = num_attention_heads | |
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size | |
self.ffn_dim = ffn_dim | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.alpha_initializer = alpha_initializer | |
self.alphas_initializer_range = alphas_initializer_range | |
self.alpha_type = alpha_type | |
self.layerdrop = layerdrop | |
self.use_cache = use_cache | |
self.do_layer_norm_before = do_layer_norm_before | |
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility | |
# with checkpoints that have been fine-tuned before transformers v4.20.1 | |
# see https://github.com/facebookresearch/metaseq/pull/164 | |
self._remove_final_layer_norm = _remove_final_layer_norm | |
self.cross_layer_interval = cross_layer_interval | |
self.cross_layer_activation_function = cross_layer_activation_function | |
self.normformer_layer_norms = normformer_layer_norms | |
self.qk_layer_norms = qk_layer_norms | |
self.rms_norm = rms_norm | |
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver | |
self.freeze_vision_layers = freeze_vision_layers | |
self.vision_model_name = vision_model_name | |
self.vision_model_params = vision_model_params | |
self.tie_word_embeddings = tie_word_embeddings | |
self.freeze_text_layers = freeze_text_layers | |
self.freeze_text_module_exceptions = freeze_text_module_exceptions | |
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions | |
self.freeze_lm_head = freeze_lm_head | |
self.image_token_index = image_token_index | |
self.vision_embed_dim = vision_embed_dim | |
self.vision_image_size = vision_image_size | |
# Resampler params | |
self.use_resampler = use_resampler | |
self.resampler_n_latents = resampler_n_latents | |
self.resampler_depth = resampler_depth | |
self.resampler_n_heads = resampler_n_heads | |
self.resampler_head_dim = resampler_head_dim | |
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since | |
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then | |
# updates the config object with `kwargs` from from_pretrained, so during the instantiation | |
# of this object many attributes have default values and haven't yet been overridden. | |
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run. | |
def check_compatibilities(self): | |
vision_model_params = eval(self.vision_model_params) | |
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params) | |
if hasattr(config, "vision_config"): | |
vision_config = config.vision_config | |
else: | |
vision_config = config | |
vision_embed_dim = vision_config.hidden_size | |
if self.vision_embed_dim != vision_embed_dim: | |
raise ValueError( | |
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model" | |
f" ({vision_embed_dim})" | |
) | |
vision_image_size = vision_config.image_size | |
if self.vision_image_size != vision_image_size: | |
raise ValueError( | |
f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model" | |
f" ({vision_image_size})" | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
outputs = super(VOPTConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs) | |
if isinstance(outputs, Tuple): | |
# When called with return_unused_kwargs=True, the first item will be the config | |
outputs[0].check_compatibilities() | |
else: | |
outputs.check_compatibilities() | |
return outputs | |