File size: 8,263 Bytes
d950775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import pdb, sys

import numpy as np
import torch
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
sys.path.insert(0, "src/utils")
from base_pipeline import BasePipeline
from cross_attention import prep_unet


class EditingPipeline(BasePipeline):
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        # pix2pix parameters
        guidance_amount=0.1,
        edit_dir=None,
        x_in=None,

    ):

        x_in.to(dtype=self.unet.dtype, device=self._execution_device)

        # 0. modify the unet to be useful :D
        self.unet = prep_unet(self.unet)
        
        # 1. setup all caching objects
        d_ref_t2attn = {} # reference cross attention maps
        
        # 2. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # TODO: add the input checker function
        # self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        do_classifier_free_guidance = guidance_scale > 1.0
        x_in = x_in.to(dtype=self.unet.dtype, device=self._execution_device)
        # 3. Encode input prompt = 2x77x1024
        prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,)

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        
        # randomly sample a latent code if not provided
        latents = self.prepare_latents(batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, x_in,)
        
        latents_init = latents.clone()
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. First Denoising loop for getting the reference cross attention maps
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with torch.no_grad():
            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    # predict the noise residual
                    noise_pred = self.unet(latent_model_input,t,encoder_hidden_states=prompt_embeds,cross_attention_kwargs=cross_attention_kwargs,).sample

                    # add the cross attention map to the dictionary
                    d_ref_t2attn[t.item()] = {}
                    for name, module in self.unet.named_modules():
                        module_name = type(module).__name__
                        if module_name == "CrossAttention" and 'attn2' in name:
                            attn_mask = module.attn_probs # size is num_channel,s*s,77
                            d_ref_t2attn[t.item()][name] = attn_mask.detach().cpu()

                    # perform guidance
                    if do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()

        # make the reference image (reconstruction)
        image_rec = self.numpy_to_pil(self.decode_latents(latents.detach()))

        prompt_embeds_edit = prompt_embeds.clone()
        #add the edit only to the second prompt, idx 0 is the negative prompt
        prompt_embeds_edit[1:2] += edit_dir
        
        latents = latents_init
        # Second denoising loop for editing the text prompt
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                x_in = latent_model_input.detach().clone()
                x_in.requires_grad = True
                
                opt = torch.optim.SGD([x_in], lr=guidance_amount)

                # predict the noise residual
                noise_pred = self.unet(x_in,t,encoder_hidden_states=prompt_embeds_edit.detach(),cross_attention_kwargs=cross_attention_kwargs,).sample

                loss = 0.0
                for name, module in self.unet.named_modules():
                    module_name = type(module).__name__
                    if module_name == "CrossAttention" and 'attn2' in name:
                        curr = module.attn_probs # size is num_channel,s*s,77
                        ref = d_ref_t2attn[t.item()][name].detach().cuda()
                        loss += ((curr-ref)**2).sum((1,2)).mean(0)
                loss.backward(retain_graph=False)
                opt.step()

                # recompute the noise
                with torch.no_grad():
                    noise_pred = self.unet(x_in.detach(),t,encoder_hidden_states=prompt_embeds_edit,cross_attention_kwargs=cross_attention_kwargs,).sample
                
                latents = x_in.detach().chunk(2)[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()


        # 8. Post-processing
        image = self.decode_latents(latents.detach())

        # 9. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # 10. Convert to PIL
        image_edit = self.numpy_to_pil(image)


        return image_rec, image_edit