Spaces:
Paused
Paused
import os, pdb | |
import argparse | |
import numpy as np | |
import torch | |
import requests | |
from PIL import Image | |
from diffusers import DDIMScheduler | |
from utils.ddim_inv import DDIMInversion | |
from utils.edit_directions import construct_direction | |
from utils.edit_pipeline import EditingPipeline | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--inversion', required=True) | |
parser.add_argument('--prompt', type=str, required=True) | |
parser.add_argument('--task_name', type=str, default='cat2dog') | |
parser.add_argument('--results_folder', type=str, default='output/test_cat') | |
parser.add_argument('--num_ddim_steps', type=int, default=50) | |
parser.add_argument('--model_path', type=str, default='CompVis/stable-diffusion-v1-4') | |
parser.add_argument('--xa_guidance', default=0.1, type=float) | |
parser.add_argument('--negative_guidance_scale', default=5.0, type=float) | |
parser.add_argument('--use_float_16', action='store_true') | |
args = parser.parse_args() | |
os.makedirs(os.path.join(args.results_folder, "edit"), exist_ok=True) | |
os.makedirs(os.path.join(args.results_folder, "reconstruction"), exist_ok=True) | |
if args.use_float_16: | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
# if the inversion is a folder, the prompt should also be a folder | |
assert (os.path.isdir(args.inversion)==os.path.isdir(args.prompt)), "If the inversion is a folder, the prompt should also be a folder" | |
if os.path.isdir(args.inversion): | |
l_inv_paths = sorted(glob(os.path.join(args.inversion, "*.pt"))) | |
l_bnames = [os.path.basename(x) for x in l_inv_paths] | |
l_prompt_paths = [os.path.join(args.prompt, x.replace(".pt",".txt")) for x in l_bnames] | |
else: | |
l_inv_paths = [args.inversion] | |
l_prompt_paths = [args.prompt] | |
# Make the editing pipeline | |
pipe = EditingPipeline.from_pretrained(args.model_path, torch_dtype=torch_dtype).to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
for inv_path, prompt_path in zip(l_inv_paths, l_prompt_paths): | |
prompt_str = open(prompt_path).read().strip() | |
rec_pil, edit_pil = pipe(prompt_str, | |
num_inference_steps=args.num_ddim_steps, | |
x_in=torch.load(inv_path).unsqueeze(0), | |
edit_dir=construct_direction(args.task_name), | |
guidance_amount=args.xa_guidance, | |
guidance_scale=args.negative_guidance_scale, | |
negative_prompt=prompt_str # use the unedited prompt for the negative prompt | |
) | |
bname = os.path.basename(args.inversion).split(".")[0] | |
edit_pil[0].save(os.path.join(args.results_folder, f"edit/{bname}.png")) | |
rec_pil[0].save(os.path.join(args.results_folder, f"reconstruction/{bname}.png")) | |