pix2pix-zero-01 / src /utils /ddim_inv.py
ysharma's picture
ysharma HF staff
upload git code base
d950775
raw
history blame
6.03 kB
import sys
import numpy as np
import torch
import torch.nn.functional as F
from random import randrange
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
from diffusers import DDIMScheduler
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
sys.path.insert(0, "src/utils")
from base_pipeline import BasePipeline
from cross_attention import prep_unet
class DDIMInversion(BasePipeline):
def auto_corr_loss(self, x, random_shift=True):
B,C,H,W = x.shape
assert B==1
x = x.squeeze(0)
# x must be shape [C,H,W] now
reg_loss = 0.0
for ch_idx in range(x.shape[0]):
noise = x[ch_idx][None, None,:,:]
while True:
if random_shift: roll_amount = randrange(noise.shape[2]//2)
else: roll_amount = 1
reg_loss += (noise*torch.roll(noise, shifts=roll_amount, dims=2)).mean()**2
reg_loss += (noise*torch.roll(noise, shifts=roll_amount, dims=3)).mean()**2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
return reg_loss
def kl_divergence(self, x):
_mu = x.mean()
_var = x.var()
return _var + _mu**2 - 1 - torch.log(_var+1e-7)
def __call__(
self,
prompt: Union[str, List[str]] = None,
num_inversion_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
img=None, # the input image as a PIL image
torch_dtype=torch.float32,
# inversion regularization parameters
lambda_ac: float = 20.0,
lambda_kl: float = 20.0,
num_reg_steps: int = 5,
num_ac_rolls: int = 5,
):
# 0. modify the unet to be useful :D
self.unet = prep_unet(self.unet)
# set the scheduler to be the Inverse DDIM scheduler
# self.scheduler = MyDDIMScheduler.from_config(self.scheduler.config)
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
self.scheduler.set_timesteps(num_inversion_steps, device=device)
timesteps = self.scheduler.timesteps
# Encode the input image with the first stage model
x0 = np.array(img)/255
x0 = torch.from_numpy(x0).type(torch_dtype).permute(2, 0, 1).unsqueeze(dim=0).repeat(1, 1, 1, 1).cuda()
x0 = (x0 - 0.5) * 2.
with torch.no_grad():
x0_enc = self.vae.encode(x0).latent_dist.sample().to(device, torch_dtype)
latents = x0_enc = 0.18215 * x0_enc
# Decode and return the image
with torch.no_grad():
x0_dec = self.decode_latents(x0_enc.detach())
image_x0_dec = self.numpy_to_pil(x0_dec)
with torch.no_grad():
prompt_embeds = self._encode_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt).to(device)
extra_step_kwargs = self.prepare_extra_step_kwargs(None, eta)
# Do the inversion
num_warmup_steps = len(timesteps) - num_inversion_steps * self.scheduler.order # should be 0?
with self.progress_bar(total=num_inversion_steps) as progress_bar:
for i, t in enumerate(timesteps.flip(0)[1:-1]):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(latent_model_input,t,encoder_hidden_states=prompt_embeds,cross_attention_kwargs=cross_attention_kwargs,).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# regularization of the noise prediction
e_t = noise_pred
for _outer in range(num_reg_steps):
if lambda_ac>0:
for _inner in range(num_ac_rolls):
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
l_ac = self.auto_corr_loss(_var)
l_ac.backward()
_grad = _var.grad.detach()/num_ac_rolls
e_t = e_t - lambda_ac*_grad
if lambda_kl>0:
_var = torch.autograd.Variable(e_t.detach().clone(), requires_grad=True)
l_kld = self.kl_divergence(_var)
l_kld.backward()
_grad = _var.grad.detach()
e_t = e_t - lambda_kl*_grad
e_t = e_t.detach()
noise_pred = e_t
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, reverse=True, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
x_inv = latents.detach().clone()
# reconstruct the image
# 8. Post-processing
image = self.decode_latents(latents.detach())
image = self.numpy_to_pil(image)
return x_inv, image, image_x0_dec