pix2pix-zero-01 / src /inversion.py
ysharma's picture
ysharma HF staff
update inversion,py
74f3a0d
import os, pdb
import argparse
import numpy as np
import torch
import requests
from PIL import Image
from lavis.models import load_model_and_preprocess
from utils.ddim_inv import DDIMInversion
from utils.scheduler import DDIMInverseScheduler
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--input_image', type=str, default='assets/test_images/cat_a.png')
parser.add_argument('--results_folder', type=str, default='output/test_cat')
parser.add_argument('--num_ddim_steps', type=int, default=50)
parser.add_argument('--model_path', type=str, default='CompVis/stable-diffusion-v1-4')
parser.add_argument('--use_float_16', action='store_true')
args = parser.parse_args()
# make the output folders
os.makedirs(os.path.join(args.results_folder, "inversion"), exist_ok=True)
os.makedirs(os.path.join(args.results_folder, "prompt"), exist_ok=True)
if args.use_float_16:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# load the BLIP model
model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=torch.device("cuda"))
# make the DDIM inversion pipeline
pipe = DDIMInversion.from_pretrained(args.model_path, torch_dtype=torch_dtype).to("cuda")
pipe.scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config)
# if the input is a folder, collect all the images as a list
if os.path.isdir(args.input_image):
l_img_paths = sorted(glob(os.path.join(args.input_image, "*.png")))
else:
l_img_paths = [args.input_image]
for img_path in l_img_paths:
bname = os.path.basename(args.input_image).split(".")[0]
img = Image.open(args.input_image).resize((512,512), Image.Resampling.LANCZOS)
# generate the caption
_image = vis_processors["eval"](img).unsqueeze(0).cuda()
prompt_str = model_blip.generate({"image": _image})[0]
x_inv, x_inv_image, x_dec_img = pipe(
prompt_str,
guidance_scale=1,
num_inversion_steps=args.num_ddim_steps,
img=img,
torch_dtype=torch_dtype
)
# save the inversion
print("Inside inversion >> save the inversion >>>")
print(os.path.join(args.results_folder, f"inversion/{bname}.pt"))
torch.save(x_inv[0], os.path.join(args.results_folder, f"inversion/{bname}.pt"))
# save the prompt string
print("Inside inversion >> save the prompt string >>>")
print(os.path.join(args.results_folder, f"prompt/{bname}.txt"))
with open(os.path.join(args.results_folder, f"prompt/{bname}.txt"), "w") as f:
f.write(prompt_str)