import os, pdb import argparse import numpy as np import torch import requests from PIL import Image from diffusers import DDIMScheduler from utils.ddim_inv import DDIMInversion from utils.edit_directions import construct_direction from utils.edit_pipeline import EditingPipeline if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument('--inversion', required=True) parser.add_argument('--prompt', type=str, required=True) parser.add_argument('--task_name', type=str, default='cat2dog') parser.add_argument('--results_folder', type=str, default='output/test_cat') parser.add_argument('--num_ddim_steps', type=int, default=50) parser.add_argument('--model_path', type=str, default='CompVis/stable-diffusion-v1-4') parser.add_argument('--xa_guidance', default=0.1, type=float) parser.add_argument('--negative_guidance_scale', default=5.0, type=float) parser.add_argument('--use_float_16', action='store_true') args = parser.parse_args() os.makedirs(os.path.join(args.results_folder, "edit"), exist_ok=True) os.makedirs(os.path.join(args.results_folder, "reconstruction"), exist_ok=True) if args.use_float_16: torch_dtype = torch.float16 else: torch_dtype = torch.float32 # if the inversion is a folder, the prompt should also be a folder assert (os.path.isdir(args.inversion)==os.path.isdir(args.prompt)), "If the inversion is a folder, the prompt should also be a folder" if os.path.isdir(args.inversion): l_inv_paths = sorted(glob(os.path.join(args.inversion, "*.pt"))) l_bnames = [os.path.basename(x) for x in l_inv_paths] l_prompt_paths = [os.path.join(args.prompt, x.replace(".pt",".txt")) for x in l_bnames] else: l_inv_paths = [args.inversion] l_prompt_paths = [args.prompt] # Make the editing pipeline pipe = EditingPipeline.from_pretrained(args.model_path, torch_dtype=torch_dtype).to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) for inv_path, prompt_path in zip(l_inv_paths, l_prompt_paths): prompt_str = open(prompt_path).read().strip() rec_pil, edit_pil = pipe(prompt_str, num_inference_steps=args.num_ddim_steps, x_in=torch.load(inv_path).unsqueeze(0), edit_dir=construct_direction(args.task_name), guidance_amount=args.xa_guidance, guidance_scale=args.negative_guidance_scale, negative_prompt=prompt_str # use the unedited prompt for the negative prompt ) bname = os.path.basename(args.inversion).split(".")[0] edit_pil[0].save(os.path.join(args.results_folder, f"edit/{bname}.png")) rec_pil[0].save(os.path.join(args.results_folder, f"reconstruction/{bname}.png"))