import os, pdb import argparse import numpy as np import torch import requests from PIL import Image from diffusers import DDIMScheduler from utils.edit_directions import construct_direction from utils.edit_pipeline import EditingPipeline if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument('--prompt_str', type=str, required=True) parser.add_argument('--random_seed', default=0) parser.add_argument('--task_name', type=str, default='cat2dog') parser.add_argument('--results_folder', type=str, default='output/test_cat') parser.add_argument('--num_ddim_steps', type=int, default=50) parser.add_argument('--model_path', type=str, default='CompVis/stable-diffusion-v1-4') parser.add_argument('--xa_guidance', default=0.15, type=float) parser.add_argument('--negative_guidance_scale', default=5.0, type=float) parser.add_argument('--use_float_16', action='store_true') args = parser.parse_args() os.makedirs(args.results_folder, exist_ok=True) if args.use_float_16: torch_dtype = torch.float16 else: torch_dtype = torch.float32 # make the input noise map torch.cuda.manual_seed(args.random_seed) x = torch.randn((1,4,64,64), device="cuda") # Make the editing pipeline pipe = EditingPipeline.from_pretrained(args.model_path, torch_dtype=torch_dtype).to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) rec_pil, edit_pil = pipe(args.prompt_str, num_inference_steps=args.num_ddim_steps, x_in=x, edit_dir=construct_direction(args.task_name), guidance_amount=args.xa_guidance, guidance_scale=args.negative_guidance_scale, negative_prompt="" # use the empty string for the negative prompt ) edit_pil[0].save(os.path.join(args.results_folder, f"edit.png")) rec_pil[0].save(os.path.join(args.results_folder, f"reconstruction.png"))