Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,286 Bytes
11e6f7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
from click import prompt
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder, FrozenOpenCLIPImagePredictionEmbedder, FrozenOpenCLIPImageEmbedder
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# ! add new schedulers from https://github.com/Stability-AI/generative-models
from .crossattn_cldm import TrainLoop3DDiffusionLSGM_crossattn
# import SD stuffs
from typing import Any, Dict, List, Optional, Tuple, Union
from contextlib import contextmanager
from omegaconf import ListConfig, OmegaConf
from sgm.modules import UNCONDITIONAL_CONFIG
from sgm.util import (default, disabled_train, get_obj_from_str,
instantiate_from_config, log_txt_as_img)
from transport import create_transport, Sampler
# from sgm.sampling_utils.demo.streamlit_helpers import init_sampling
class FlowMatchingEngine(TrainLoop3DDiffusionLSGM_crossattn):
def __init__(
self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1,
cfg_dropout_prob=0,
cond_key='img_sr',
use_eos_feature=False,
compile=False,
snr_type='lognorm',
# denoiser_config,
# conditioner_config: Union[None, Dict, ListConfig,
# OmegaConf] = None,
# sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
# loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
normalize_clip_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding,
cfg_dropout_prob=cfg_dropout_prob,
cond_key=cond_key,
use_eos_feature=use_eos_feature,
compile=compile,
**kwargs)
# ! sgm diffusion pipeline
# ! reuse the conditioner
if self.cond_key == 'caption':
ldm_configs = OmegaConf.load(
'sgm/configs/t23d-clipl-compat-fm.yaml')['ldm_configs']
else:
assert 'lognorm' in snr_type
if snr_type == 'lognorm': # by default
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm-lognorm.yaml')['ldm_configs']
# elif snr_type == 'lognorm-mv':
# ldm_configs = OmegaConf.load(
# 'sgm/configs/mv23d-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
elif snr_type == 'lognorm-mv-plucker':
ldm_configs = OmegaConf.load(
# 'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm.yaml')['ldm_configs']
'sgm/configs/mv23d-plucker-clipl-compat-fm-lognorm-noclip.yaml')['ldm_configs']
else:
ldm_configs = OmegaConf.load(
'sgm/configs/img23d-clipl-compat-fm.yaml')['ldm_configs']
self.loss_fn = (
instantiate_from_config(ldm_configs.loss_fn_config)
# if loss_fn_config is not None
# else None
)
# self.denoiser = instantiate_from_config(
# ldm_configs.denoiser_config).to(dist_util.dev())
self.transport_sampler = Sampler(self.loss_fn.transport)
self.conditioner = instantiate_from_config(
default(ldm_configs.conditioner_config,
UNCONDITIONAL_CONFIG)).to(dist_util.dev())
# ! setup optimizer (with cond embedder params here)
self._setup_opt2()
self._load_model2()
def _setup_opt(self):
pass # see below
def _setup_opt2(self):
# ! add trainable conditioner parameters
# https://github.com/Stability-AI/generative-models/blob/fbdc58cab9f4ee2be7a5e1f2e2787ecd9311942f/sgm/models/diffusion.py#L219
# params = list(self.ddpm_model.parameters())
self.opt = AdamW([{
'name': 'ddpm',
'params': self.ddpm_model.parameters(),
},
],
lr=self.lr,
weight_decay=self.weight_decay)
embedder_params = []
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
embedder_params = embedder_params + list(embedder.parameters())
if len(embedder_params) != 0:
self.opt.add_param_group(
{
'name': 'embedder',
'params': embedder_params,
'lr': self.lr*0.1, # smaller lr to finetune dino/clip
}
)
# if self.train_vae:
# for rec_param_group in self._init_optim_groups(self.rec_model):
# self.opt.add_param_group(rec_param_group)
print(self.opt)
def save(self, mp_trainer=None, model_name='ddpm'):
# save embedder params also
super().save(mp_trainer, model_name)
# save embedder ckpt
if dist_util.get_rank() == 0:
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(embedder.state_dict(), f)
dist_util.synchronize()
def _load_model2(self):
# ! load embedder
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
# embedder_params = embedder_params + list(embedder.parameters())
model_name = embedder.__class__.__name__
filename = f"embedder_{model_name}{(self.step+self.resume_step):07d}.pt"
# embedder_FrozenDinov2ImageEmbedderMV2115000.pt
# with bf.BlobFile(bf.join(get_blob_logdir(), filename),
# "wb") as f:
# th.save(embedder.state_dict(), f)
split = self.resume_checkpoint.split("model")
resume_checkpoint = str(
Path(split[0]) / filename)
if os.path.exists(resume_checkpoint):
if dist.get_rank() == 0:
logger.log(
f"loading cond embedder from checkpoint: {resume_checkpoint}...")
# if model is None:
# model = self.model
embedder.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint,
map_location=dist_util.dev(),
))
else:
logger.log(f'{resume_checkpoint} not found.')
if dist_util.get_world_size() > 1:
dist_util.sync_params(embedder.parameters())
def instantiate_cond_stage(self, normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob,
use_eos_feature=False):
pass # placeholder function. initialized in the self.__init__() using SD api
# ! already merged
def prepare_ddpm(self, eps, mode='p'):
raise NotImplementedError('already implemented in self.denoiser')
# merged from noD.py
# use sota denoiser, loss_fn etc.
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
# ! enable the gradient of both models
requires_grad(self.ddpm_model, True)
self.mp_trainer.zero_grad() # !!!!
if 'img' in batch:
batch_size = batch['img'].shape[0]
else:
batch_size = len(batch['caption'])
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
# move condition to self.dtype
# =================================== ae part ===================================
# with th.cuda.amp.autocast(dtype=th.bfloat16,
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
assert 'latent' in micro
vae_out = {self.latent_name: micro['latent']}
# else:
# vae_out = self.ddp_rec_model(
# img=micro['img_to_encoder'],
# c=micro['c'],
# behaviour='encoder_vae',
# ) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name] / self.triplane_scaling_divider
# eps = vae_out.pop(self.latent_name)
# if 'bg_plane' in vae_out:
# eps = th.cat((eps, vae_out['bg_plane']),
# dim=1) # include background, B 12+4 32 32
# ! SD loss
# cond = self.get_c_input(micro, bs=eps.shape[0])
micro['img-c'] = {
'img': micro['img'].to(self.dtype),
'c': micro['c'].to(self.dtype),
}
loss, loss_other_info = self.loss_fn(self.ddp_ddpm_model,
# self.denoiser,
self.conditioner,
eps.to(self.dtype),
micro) # type: ignore
loss = loss.mean()
log_rec3d_loss_dict({})
log_rec3d_loss_dict({
# 'eps_mean':
# eps.mean(),
# 'eps_std':
# eps.std([1, 2, 3]).mean(0),
# 'pred_x0_std':
# loss_other_info['model_output'].std([1, 2, 3]).mean(0),
"p_loss":
loss,
})
self.mp_trainer.backward(loss) # joint gradient descent
# update ddpm accordingly
self.mp_trainer.optimize(self.opt)
# ! directly eval_cldm() for sampling.
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
# self.log_control_images(vae_out, micro, loss_other_info)
@th.inference_mode()
def log_control_images(self, vae_out, micro, ddpm_ret):
if 'posterior' in vae_out:
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {self.latent_name: vae_out[self.latent_name][0:1].to(self.dtype)}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
pred = self.ddp_rec_model(latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
pred_img = pred['image_raw']
if 'img' in micro:
gt_img = micro['img']
else:
gt_img = th.zeros_like(pred['image_raw'])
if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
else:
gt_depth = th.zeros_like(gt_img[:, 0:1, ...])
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
# cond = self.get_c_input(micro)
# hint = th.cat(cond['c_concat'], 1)
gt_vis = th.cat(
[
gt_img,
gt_img,
gt_img,
# self.pool_128(hint),
# gt_img,
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
# self.sampler
noised_latent, sigmas, x_start = [
ddpm_ret[k] for k in ['noised_input', 'sigmas', 'model_output']
]
noised_latent = {
'latent_normalized_2Ddiffusion':
noised_latent[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
denoised_latent = {
'latent_normalized_2Ddiffusion':
x_start[0:1].to(self.dtype) * self.triplane_scaling_divider,
}
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=noised_latent,
behaviour=self.render_latent_behaviour)
# pred_x0 = self.sde_diffusion._predict_x0_from_eps(
# eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=denoised_latent,
# latent=pred_x0[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat(
[
self.pool_128(img) for img in (
pred_img[0:1],
noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1], # controlnet result
pred_depth[0:1].repeat_interleave(3, dim=1))
],
dim=-1) # B, 3, H, W
if 'img' in micro:
vis = th.cat([gt_vis, pred_vis],
dim=-2)[0].permute(1, 2,
0).cpu() # ! pred in range[-1, 1]
else:
vis = pred_vis[0].permute(1, 2, 0).cpu()
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{sigmas[0].item():3}.jpg'
Image.fromarray(vis).save(img_save_path)
# if self.cond_key == 'caption':
# with open(f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt', 'w') as f:
# f.write(micro['caption'][0])
print('log denoised vis to: ', img_save_path)
th.cuda.empty_cache()
@th.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
use_cfg=True,
# cfg_scale=4, # default value in SiT
# cfg_scale=1.5, # default value in SiT
cfg_scale=4.0, # default value in SiT
**kwargs,
):
# self.sampler
sample_fn = self.transport_sampler.sample_ode(num_steps=250, cfg=True) # default ode sampling setting.
# th.manual_seed(42) # reproducible
zs = th.randn(batch_size, *shape).to(dist_util.dev()).to(self.dtype)
assert use_cfg
# sample_model_kwargs = {'uc': uc, 'cond': cond}
model_fn = self.ddpm_model.forward_with_cfg # default
# ! prepare_inputs in VanillaCFG, for compat issue
c_out = {}
for k in cond:
if k in ["vector", "crossattn", "concat"]:
c_out[k] = th.cat((cond[k], uc[k]), 0)
else:
assert cond[k] == uc[k]
c_out[k] = cond[k]
sample_model_kwargs = {'context': c_out, 'cfg_scale': cfg_scale}
zs = th.cat([zs, zs], 0)
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
samples = sample_fn(zs, model_fn, **sample_model_kwargs)[-1]
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
return samples
@th.inference_mode()
def eval_cldm(
self,
prompt="",
save_img=False,
use_train_trajectory=False,
camera=None,
num_samples=1,
num_instances=1,
unconditional_guidance_scale=4.0, # default value in neural ode
export_mesh=False,
**kwargs,
):
# ! slightly modified for new API. combined with
# /cpfs01/shared/V2V/V2V_hdd/yslan/Repo/generative-models/sgm/models/diffusion.py:249 log_images()
# TODO, support batch_size > 1
self.ddpm_model.eval()
# assert unconditional_guidance_scale == 4.0
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale}
N = num_samples # hard coded, to update
z_shape = (
N,
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
3 * self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size)
data = iter(self.data)
def sample_and_save(batch_c,idx=0):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# st() # do rendering first
# ! get c
(Path(logger.get_dir())/f'{self.step+self.resume_step}').mkdir(exist_ok=True, parents=True)
if 'img' in self.cond_key:
img_save_path = f'{logger.get_dir()}/{self.step+self.resume_step}/imgcond-{idx}.jpg'
if 'c' in self.cond_key:
torchvision.utils.save_image(batch_c['img'][0], img_save_path, value_range=(-1,1), normalize=True, padding=0) # torch.Size([24, 6, 3, 256, 256])
else:
torchvision.utils.save_image(batch_c['img'], img_save_path, value_range=(-1,1), normalize=True, padding=0)
assert camera is not None
batch = {'c': camera.clone()[:24]}
# rendering
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'idx-{idx}-cfg={unconditional_guidance_scale}_sample-{i}'
if self.cond_key == 'caption':
name_prefix = f'{name_prefix}_{prompt}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
self.render_video_given_triplane(
samples[i:i+1].to(self.dtype),
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=export_mesh,
render_all=True)
if self.cond_key == 'caption':
batch_c = {self.cond_key: prompt}
sample_and_save(batch_c)
else:
for idx, batch in enumerate(data):
# batch = next(data) # using same cond here
if self.cond_key == 'img-c':
batch_c = {
self.cond_key: {
'img': batch['img'].to(self.dtype).to(dist_util.dev()),
'c': batch['c'].to(self.dtype).to(dist_util.dev()),
},
'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
}
else:
batch_c = {self.cond_key: batch[self.cond_key].to(dist_util.dev()).to(self.dtype)}
sample_and_save(batch_c, idx)
self.ddpm_model.train()
@th.inference_mode()
def eval_i23d_and_export(
self,
inp_img,
# camera,
prompt="",
save_img=False,
use_train_trajectory=False,
num_samples=1,
num_instances=1,
unconditional_guidance_scale=4.0, # default value in neural ode
export_mesh=True,
**kwargs,
):
output_model, output_video = './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0.ply', './logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/triplane_cfg=4.0_sample-0.mp4'
return output_model, output_video
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:]
inp_img = th.from_numpy(inp_img).permute(2,0,1).unsqueeze(0) / 127.5 - 1 # to [-1,1]
# for gradio demo
self.ddpm_model.eval()
# assert unconditional_guidance_scale == 4.0
args = dnnlib.EasyDict(
dict(
batch_size=1,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False))
model_kwargs = {}
uc = None
log = dict()
ucg_keys = [self.cond_key] # i23d
sampling_kwargs = {'cfg_scale': unconditional_guidance_scale}
N = num_samples # hard coded, to update
z_shape = (
N,
self.ddpm_model.in_channels if not self.ddpm_model.roll_out else
3 * self.ddpm_model.in_channels, # type: ignore
self.diffusion_input_size,
self.diffusion_input_size)
# data = iter(self.data)
assert camera is not None
batch = {'c': camera.clone()[:24]}
def sample_and_save(batch_c):
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
c, uc = self.conditioner.get_unconditional_conditioning(
batch_c,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0 else [],
)
for k in c:
if isinstance(c[k], th.Tensor):
# c[k], uc[k] = map(lambda y: y[k][:N].to(dist_util.dev()),
# (c, uc))
assert c[k].shape[0] == 1
c[k], uc[k] = map(lambda y: y[k].repeat_interleave(N, 0).to(dist_util.dev()),
(c, uc)) # support bs>1 sampling given a condition
samples = self.sample(c,
shape=z_shape[1:],
uc=uc,
batch_size=N,
**sampling_kwargs)
# rendering
all_vid_dump_path = []
all_mesh_dump_path = []
for i in range(samples.shape[0]):
th.cuda.empty_cache()
# ! render sampled latent
name_prefix = f'cfg={unconditional_guidance_scale}_sample-{i}'
if self.cond_key == 'caption':
name_prefix = f'{name_prefix}_{prompt}'
with th.cuda.amp.autocast(dtype=self.dtype,
enabled=self.mp_trainer.use_amp):
vid_dump_path, mesh_dump_path = self.render_video_given_triplane(
samples[i:i+1].to(self.dtype),
self.rec_model, # compatible with join_model
name_prefix=name_prefix,
save_img=save_img,
render_reference=batch,
export_mesh=export_mesh,
render_all=True)
all_vid_dump_path.append(vid_dump_path)
all_mesh_dump_path.append(mesh_dump_path)
# return all_vid_dump_path, all_mesh_dump_path
return all_vid_dump_path[0], all_mesh_dump_path[0] # for compat issue
if self.cond_key == 'caption':
batch_c = {self.cond_key: prompt}
return sample_and_save(batch_c)
else:
# for idx, batch in enumerate(data):
# batch = next(data) # using same cond here
# if self.cond_key == 'img-c':
# batch_c = {
# self.cond_key: {
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()),
# 'c': batch['c'].to(self.dtype).to(dist_util.dev()),
# },
# 'img': batch['img'].to(self.dtype).to(dist_util.dev()) # required by clip
# }
# else:
batch_c = {self.cond_key: inp_img.to(dist_util.dev()).to(self.dtype)}
return sample_and_save(batch_c)
|