File size: 9,757 Bytes
11e6f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from argparse import ArgumentParser
import sys
import os

sys.path.append('..')
sys.path.append('.')

import torch
import torch.nn as nn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler

from vit.vision_transformer import VisionTransformer as ViT
from vit.vit_triplane import ViTTriplane
from guided_diffusion import dist_util, logger

import click
import dnnlib

SEED = 42
BATCH_SIZE = 8
NUM_EPOCHS = 1


class YourDataset(Dataset):
    def __init__(self):
        pass


@click.command()
@click.option('--cfg', help='Base configuration', type=str, default='ffhq')
@click.option('--sr-module',
              help='Superresolution module override',
              metavar='STR',
              required=False,
              default=None)
@click.option('--density_reg',
              help='Density regularization strength.',
              metavar='FLOAT',
              type=click.FloatRange(min=0),
              default=0.25,
              required=False,
              show_default=True)
@click.option('--density_reg_every',
              help='lazy density reg',
              metavar='int',
              type=click.FloatRange(min=1),
              default=4,
              required=False,
              show_default=True)
@click.option('--density_reg_p_dist',
              help='density regularization strength.',
              metavar='FLOAT',
              type=click.FloatRange(min=0),
              default=0.004,
              required=False,
              show_default=True)
@click.option('--reg_type',
              help='Type of regularization',
              metavar='STR',
              type=click.Choice([
                  'l1', 'l1-alt', 'monotonic-detach', 'monotonic-fixed',
                  'total-variation'
              ]),
              required=False,
              default='l1')
@click.option('--decoder_lr_mul',
              help='decoder learning rate multiplier.',
              metavar='FLOAT',
              type=click.FloatRange(min=0),
              default=1,
              required=False,
              show_default=True)
@click.option('--c_scale',
              help='Scale factor for generator pose conditioning.',
              metavar='FLOAT',
              type=click.FloatRange(min=0),
              required=False,
              default=1)
def main(**kwargs):
    # parser = ArgumentParser('DDP usage example')
    # parser.add_argument('--local_rank', type=int, default=-1, metavar='N', help='Local process rank.')  # you need this argument in your scripts for DDP to work
    # args = parser.parse_args()

    opts = dnnlib.EasyDict(kwargs)  # Command line arguments.
    c = dnnlib.EasyDict()  # Main config dict.

    rendering_options = {
        # 'image_resolution': c.training_set_kwargs.resolution,
        'image_resolution': 256,
        'disparity_space_sampling': False,
        'clamp_mode': 'softplus',
        # 'superresolution_module': sr_module,
        # 'c_gen_conditioning_zero': not opts.
        # gen_pose_cond,  # if true, fill generator pose conditioning label with dummy zero vector
        # 'gpc_reg_prob': opts.gpc_reg_prob if opts.gen_pose_cond else None,
        'c_scale':
        opts.c_scale,  # mutliplier for generator pose conditioning label
        # 'superresolution_noise_mode': opts.
        # sr_noise_mode,  # [random or none], whether to inject pixel noise into super-resolution layers
        'density_reg': opts.density_reg,  # strength of density regularization
        'density_reg_p_dist': opts.
        density_reg_p_dist,  # distance at which to sample perturbed points for density regularization
        'reg_type': opts.
        reg_type,  # for experimenting with variations on density regularization
        'decoder_lr_mul':
        opts.decoder_lr_mul,  # learning rate multiplier for decoder
        'sr_antialias': True,
        'return_triplane_features': True,  # for DDF supervision
        'return_sampling_details_flag': True,
    }

    if opts.cfg == 'ffhq':
        rendering_options.update({
            'focal': 2985.29 / 700,
            'depth_resolution':
            # 48,  # number of uniform samples to take per ray.
            36,  # number of uniform samples to take per ray.
            'depth_resolution_importance':
            # 48,  # number of importance samples to take per ray.
            36,  # number of importance samples to take per ray.
            'ray_start':
            2.25,  # near point along each ray to start taking samples.
            'ray_end':
            3.3,  # far point along each ray to stop taking samples. 
            'box_warp':
            1,  # the side-length of the bounding box spanned by the tri-planes; box_warp=1 means [-0.5, -0.5, -0.5] -> [0.5, 0.5, 0.5].
            'avg_camera_radius':
            2.7,  # used only in the visualizer to specify camera orbit radius.
            'avg_camera_pivot': [
                0, 0, 0.2
            ],  # used only in the visualizer to control center of camera rotation.
        })
    elif opts.cfg == 'afhq':
        rendering_options.update({
            'focal': 4.2647,
            'depth_resolution': 48,
            'depth_resolution_importance': 48,
            'ray_start': 2.25,
            'ray_end': 3.3,
            'box_warp': 1,
            'avg_camera_radius': 2.7,
            'avg_camera_pivot': [0, 0, -0.06],
        })
    elif opts.cfg == 'shapenet':
        rendering_options.update({
            'depth_resolution': 64,
            'depth_resolution_importance': 64,
            # 'ray_start': 0.1,
            # 'ray_end': 2.6,
            'ray_start': 0.1,
            'ray_end': 3.3,
            'box_warp': 1.6,
            'white_back': True,
            'avg_camera_radius': 1.7,
            'avg_camera_pivot': [0, 0, 0],
        })
    else:
        assert False, "Need to specify config"

    c.rendering_kwargs = rendering_options

    args = opts

    # keep track of whether the current process is the `master` process (totally optional, but I find it useful for data laoding, logging, etc.)
    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.is_master = args.local_rank == 0

    # set the device
    # device = torch.cuda.device(args.local_rank)
    device = torch.device(f"cuda:{args.local_rank}")

    # initialize PyTorch distributed using environment variables (you could also do this more explicitly by specifying `rank` and `world_size`, but I find using environment variables makes it so that you can easily use the same script on different machines)
    dist.init_process_group(backend='nccl',
                            init_method='env://',
                            rank=args.local_rank,
                            world_size=torch.cuda.device_count())
    print(f"{args.local_rank=} init complete")
    torch.cuda.set_device(args.local_rank)

    # set the seed for all GPUs (also make sure to set the seed for random, numpy, etc.)
    torch.cuda.manual_seed_all(SEED)

    # initialize your model (BERT in this example)
    # model = BertForMaskedLM.from_pretrained('bert-base-uncased')

    # model = ViT(
    #     image_size = 256,
    #     patch_size = 32,
    #     num_classes = 1000,
    #     dim = 1024,
    #     depth = 6,
    #     heads = 16,
    #     mlp_dim = 2048,
    #     dropout = 0.1,
    #     emb_dropout = 0.1
    # )

    # TODO, check pre-trained ViT encoder cfgs
    model = ViTTriplane(
        img_size=[224],
        patch_size=16,
        in_chans=384,
        num_classes=0,
        embed_dim=384,  # Check ViT encoder dim
        depth=2,
        num_heads=16,
        mlp_ratio=4.,
        qkv_bias=False,
        qk_scale=None,
        drop_rate=0.1,
        attn_drop_rate=0.,
        drop_path_rate=0.,
        norm_layer=nn.LayerNorm,
        out_chans=96,
        c_dim=25,  # Conditioning label (C) dimensionality.
        img_resolution=128,  # Output resolution.
        img_channels=3,  # Number of output color channels.
        cls_token=False,
        # TODO, replace with c
        rendering_kwargs=c.rendering_kwargs,
    )
    # noise = torch.randn(1, 8, 8, 1024)

    # send your model to GPU
    model = model.to(device)

    # initialize distributed data parallel (DDP)
    model = DDP(model,
                device_ids=[args.local_rank],
                output_device=args.local_rank)

    dist_util.sync_params(model.named_parameters())

    # # initialize your dataset
    # dataset = YourDataset()

    # # initialize the DistributedSampler
    # sampler = DistributedSampler(dataset)

    # # initialize the dataloader
    # dataloader = DataLoader(
    #     dataset=dataset,
    #     sampler=sampler,
    #     batch_size=BATCH_SIZE
    # )

    # start your training!
    for epoch in range(NUM_EPOCHS):
        # put model in train mode
        model.train()

        # let all processes sync up before starting with a new epoch of training
        dist.barrier()

        noise = torch.randn(1, 14 * 14, 384).to(device)  # B, L, C
        img = model(noise, torch.zeros(1, 25).to(device))
        print(img['image'].shape)
    # st()

    # img = torch.randn(1, 3, 256, 256).to(device)

    # preds = model(img)
    # print(preds.shape)
    # assert preds.shape == (1, 1000), 'correct logits outputted'

    # for step, batch in enumerate(dataloader):
    #     # send batch to device
    #     batch = tuple(t.to(args.device) for t in batch)

    #     # forward pass
    #     outputs = model(*batch)

    #     # compute loss
    #     loss = outputs[0]

    #     # etc.


if __name__ == '__main__':
    main()